
Simple High-Level Code For Cryptographic
Arithmetic – With Proofs, Without Compromises

Andres Erbsen Jade Philipoom Jason Gross Robert Sloan Adam Chlipala
MIT CSAIL,

Cambridge, MA, USA
{andreser, jadep, jgross}@mit.edu, rob.sloan@alum.mit.edu, adamc@csail.mit.edu

Abstract—We introduce a new approach for implementing
cryptographic arithmetic in short high-level code with machine-
checked proofs of functional correctness. We further demonstrate
that simple partial evaluation is sufficient to transform into the
fastest-known C code, breaking the decades-old pattern that the
only fast implementations are those whose instruction-level steps
were written out by hand.

These techniques were used to build an elliptic-curve library
that achieves competitive performance for 80 prime fields and
multiple CPU architectures, showing that implementation and
proof effort scales with the number and complexity of concep-
tually different algorithms, not their use cases. As one outcome,
we present the first verified high-performance implementation
of P-256, the most widely used elliptic curve. Implementations
from our library were included in BoringSSL to replace existing
specialized code, for inclusion in several large deployments for
Chrome, Android, and CloudFlare.

I. MOTIVATION

The predominant practice today is to implement crypto-
graphic primitives at the lowest possible level of abstraction:
usually flat C code, ideally assembly language if engineering
time is plentiful. Low-level implementation has been the only
way to achieve good performance, ensure that execution time
does not leak secret information, and enable the code to
be called from any programming language. Yet placing the
burden of every detail on the programmer also leaves a lot
to be desired. The demand for implementation experts’ time
is high, resulting in an ever-growing backlog of algorithms to
be reimplemented in specialized code “as soon as possible.”
Worse, bugs are also common enough that it is often not
economical to go beyond fixing the behavior for problematic
inputs and understand the root cause and impact of the defect.

There is hope that these issues can eventually be overcome
by redoubling community efforts to produce high-quality
crypto code. However, even the most renowned implementors
are not infallible, and if a typo among thousands of lines of
monotonous code can only be recognized as incorrect by top
experts,1 it is reasonable to expect diminishing returns for
achieving correctness through manual review. A number of
tools for computer-aided verification have been proposed [1]–
[6], enabling developers to eliminate incorrect-output bugs
conclusively. Three solid implementations of the X25519
Diffie-Hellman function were verified. In the beautiful world

1We refer to the ed25519-amd64-64-24k bug that is discussed along
with other instructive real-world implementation defects in Appendix A.

where X25519 was the only arithmetic-based crypto primitive
we need, now would be the time to declare victory and go
home. Yet most of the Internet still uses P-256, and the
current proposals for post-quantum cryptosystems are far from
Curve25519’s combination of performance and simplicity.

A closer look into the development and verification process
(with an eye towards replicating it for another function) reveals
a discouraging amount of duplicated effort. First, expert time
is spent on mechanically writing out the instruction-level
steps required to perform the desired arithmetic, drawing from
experience and folklore. Then, expert time is spent to optimize
the code by applying a carefully chosen combination of simple
transformations. Finally, expert time is spent on annotating
the now-munged code with assertions relating values of run-
time variables to specification variables, until the SMT solver
(used as a black box) is convinced that each assertion is
implied by the previous ones. As the number of steps required
to multiply two numbers is quadratic in the size of those
numbers, effort grows accordingly: for example “Verifying
Curve25519 Software” [1] reports that multiplication modulo
2255 − 19 required 27 times the number of assertions used
for 2127 − 1. It is important to note that both examples use
the same simple modular multiplication algorithm, and the
same correctness argument should apply, just with different
parameters. This is just one example of how manual repetition
of algorithmic steps inside primitive cryptographic arithmetic
implementations makes them notoriously difficult to write,
review, or prove correct.

Hence we suggest a rather different way of implementing
cryptographic primitives: to implement general algorithms in
the style that best illustrates their correctness arguments and
then derive parameter-specific low-level code through partial
evaluation. For example, the algorithm used for multiplication
modulo 2127 − 1 and 2255 − 19 is first encoded as a purely
functional program operating on lists of digit-weight pairs: it
generates a list of partial products, shifts down the terms with
weight greater than the modulus, and scales them accordingly.
It is then instantiated with lists of concrete weights and length,
for example ten limbs with weights 2d25.5ie, and partially
evaluated so that no run-time manipulation of lists and weights
remains, resulting in straight-line code very similar to what
an expert would have written. As the optimization pipeline
is proven correct once and for all, correctness of all code
generated from a high-level algorithm can be proven directly

on its high-level implementation. A nice side benefit of this
approach is that the same high-level algorithm and proof can
be used for multiple target configurations with very little effort,
enabling the use of fast implementations in cases that were
previously not worth the effort.

In practice, we use the fast arithmetic implementations
reported on here in conjunction with a library of verified
cryptographic algorithms, the rest of which deviates much less
from common implementation practice. All formal reasoning
is done in the Coq proof assistant, and the overall trusted
computing base also includes a simple pretty-printer and the
C language toolchain. The development, called Fiat Cryptog-
raphy, is available under the MIT license at:

https://github.com/mit-plv/fiat-crypto

The approach we advocate for is already used in widely de-
ployed code. Most applications relying on the implementations
described in this paper are using them through BoringSSL,
Google’s OpenSSL-derived crypto library that includes our
Curve25519 and P-256 implementations. A high-profile user
is the Chrome Web browser, so today about half of HTTPS
connections opened by Web browsers worldwide use our fast
verified code (Chrome versions since 65 have about 60%
market share [7], and 90% of connections use X25519 or P-
256 [8]). BoringSSL is also used in Android and on a majority
of Google’s servers, so a Google search from Chrome would
likely be relying on our code on both sides of the connection.
Maintainers appreciate the reduced need to worry about bugs.

II. OVERVIEW

We will explain how we write algorithm implementations
in a high-level way that keeps the structural principles as
clear and readable as possible, proving functional correctness.
Our explanation builds up to showing how other security
constraints can be satisfied without sacrificing the appeal of
our new strategy. Our output code follows industry-standard
“constant-time” coding practices and is only bested in through-
put by platform-specific assembly-language implementations
(and only by a modest margin). This section will give a
tour of the essential ingredients of our methodology, and the
next section will explain in detail how to implement field
arithmetic for implementation-friendly primes like 2255 − 19.
Building on this intuition (and code!), Section III-F culmi-
nates in a specializable implementation of the word-by-word
Montgomery reduction algorithm for multiplication modulo
any prime. Section IV will explain the details of the compiler
that turns the described implementations into the kind of code
that implementation experts write by hand for each arithmetic
primitive. We report performance measurements in Section V
and discuss related work and future directions in Sections VI
and VII.

Fig. 1 gives a concrete example of what our framework
provides. The algorithm in the top half of the figure is
a transcription of the word-by-word Montgomery reduction
algorithm, following Gueron’s Algorithm 4 [9]. As is required
by the current implementation of our optimization pipeline,

Input:

Definition wwmm_step A B k S ret :=
divmod_r_cps A (λ ’(A, T1),
@scmul_cps r _ T1 B _ (λ aB,
@add_cps r _ S aB _ (λ S,
divmod_r_cps S (λ ’(_, s),
mul_split_cps’ r s k (λ ’(q, _),
@scmul_cps r _ q M _ (λ qM,
@add_longer_cps r _ S qM _ (λ S,
divmod_r_cps S (λ ’(S, _),
@drop_high_cps (S R_numlimbs) S _ (λ S,
ret (A, S)))))))))).

Fixpoint wwmm_loop A B k len_A ret :=
match len_A with
| O => ret
| S len_A’ => λ ’(A, S),

wwmm_step A B k S (wwmm_loop A B k len_A’ ret)
end.

Output:

void wwmm_p256(u64 out[4], u64 x[4], u64 y[4]) {
u64 x17, x18 = mulx_u64(x[0], y[0]);
u64 x20, x21 = mulx_u64(x[0], y[1]);
u64 x23, x24 = mulx_u64(x[0], y[2]);
u64 x26, x27 = mulx_u64(x[0], y[3]);
u64 x29, u8 x30 = addcarryx_u64(0x0, x18, x20);
u64 x32, u8 x33 = addcarryx_u64(x30, x21, x23);
u64 x35, u8 x36 = addcarryx_u64(x33, x24, x26);
u64 x38, u8 _ = addcarryx_u64(0x0, x36, x27);
u64 x41, x42 = mulx_u64(x17, 0xffffffffffffffff);
u64 x44, x45 = mulx_u64(x17, 0xffffffff);
u64 x47, x48 = mulx_u64(x17, 0xffffffff00000001);
u64 x50, u8 x51 = addcarryx_u64(0x0, x42, x44);
// 100 more lines...

Fig. 1: Word-by-word Montgomery Multiplication, output
specialized to P-256 (2256 − 2224 + 2192 + 296 − 1)

this parameter-agnostic code is written in continuation-passing
style where functions do not return normally but instead take
as arguments callbacks to invoke when answers become avail-
able. The notation λ ’(x, y), ... encodes an anonymous
function with arguments x and y.

The bottom half of the figure shows the result of spe-
cializing the general algorithm to P-256, the elliptic curve
most commonly used in TLS and unfortunately not supported
by any of the verified libraries discussed earlier. Note that
some operations influence the generated code by creating
explicit instruction sequences (highlighted in matching colors),
while other operations instead control which input expressions
should be fed into others. The number of low-level lines
per high-level line varies between curves and target hardware
architectures. The generated code is accompanied by a Coq
proof of correctness stated in terms of the straightline-code
language semantics and the Coq standard-library definitions
of integer arithmetic.

A. High-Level Arithmetic Library Designed For Specialization

At the most basic level, all cryptographic arithmetic algo-
rithms come down to implementing large mathematical objects
(integers or polynomials of several hundred bits) in terms of
arithmetic provided by the hardware platform (for example
integers modulo 264). To start out with, let us consider the

https://github.com/mit-plv/fiat-crypto

example of addition, with the simplifying precondition that
no digits exceed half of the hardware-supported maximum.

type num = list N
add : num→ num→ num

add (a :: as) (b :: bs) = let x = a+ b in x :: add as bs

add as [] = as

add [] bs = bs

To give the specification of this function acting on a base-264
little-endian representation, we define an abstraction function
evaluating each digit list ` into a single number.

b c : num→ N
ba :: asc = a+ 264basc
b[]c = 0

To prove correctness, we show (by naive induction on a) that
evaluating the result of add behaves as expected:

∀a, b. badd a bc = bac+ bbc

Using the standard list type in Coq, the theorem becomes

Lemma eval_add : ∀a b, badd a bc = bac+bbc.
induction a,b;cbn; rewrite ?IHa;nia. Qed.

The above proof is only possible because we are inten-
tionally avoiding details of the underlying machine arithmetic
– if the list of digits were defined to contain 64-bit words
instead of N, repeated application of add would eventually
result in integer overflow. This simplification is an instance of
the pattern of anticipating low-level optimizations in writing
high-level code: we do expect to avoid overflow, and our
choice of a digit representation is motivated precisely by that
aim. It is just that the proofs of overflow-freedom will be
injected in a later stage of our pipeline, as long as earlier
stages like our current one are implemented correctly. There
is good reason for postponing this reasoning: generally we care
about the context of higher-level code calling our arithmetic
primitives. In an arbitrary context, an add implemented using
64-bit words would need to propagate carries from each word
to the next, causing an unnecessary slowdown when called
with inputs known to be small.

B. Partial Evaluation For Specific Parameters

It is impossible to achieve competitive performance with
arithmetic code that manipulates dynamically allocated lists
at runtime. The fastest code will implement, for example, a
single numeric addition with straightline code that keeps as
much state as possible in registers. Expert implementers today
write that straightline code manually, applying various rules of
thumb. Our alternative is to use partial evaluation in Coq to
generate all such specialized routines, beginning with a single
library of high-level functional implementations that general-
ize the patterns lurking behind hand-written implementations
favored today.

Consider the case where we know statically that each num-
ber we add will have 3 digits. A particular addition in our top-
level algorithm may have the form add [a1, a2, a3] [b1, b2, b3],

where the ais and bis are unknown program inputs. While we
cannot make compile-time simplifications based on the values
of the digits, we can reduce away all the overhead of dynamic
allocation of lists. We use Coq’s term-reduction machinery,
which allows us to choose λ-calculus-style reduction rules to
apply until reaching a normal form. Here is what happens with
our example, when we ask Coq to leave let and + unreduced
but apply other rules.

add [a1, a2, a3] [b1, b2, b3] ⇓ let n1 = a1 + b1 in n1 ::

let n2 = a2 + b2 in n2 ::

let n3 = a3 + b3 in n3 :: []

We have made progress: no run-time case analysis on lists
remains. Unfortunately, let expressions are intermixed with
list constructions, leading to code that looks rather different
than assembly. To persuade Coq’s built-in term reduction to
do what we want, we first translate arithmetic operations to
continuation-passing style. Concretely, we can rewrite add.

add′ : ∀α. num→ num→ (num→ α)→ α

add′ (a :: as) (b :: bs) k =

let n = a+ b in

add′ as bs (λ`. k (n :: `))

add′ as [] k = k as

add′ [] bs k = k bs

Reduction turns this function into assembly-like code.

add′ [a1, a2, a3] [b1, b2, b3] (λ`. `) ⇓ let n1 = a1 + b1 in

let n2 = a2 + b2 in

let n3 = a3 + b3 in

[n1, n2, n3]

When add′ is applied to a particular continuation, we can
also reduce away the result list. Chaining together sequences
of function calls leads to idiomatic and efficient assembly-style
code, based just on Coq’s normal term reduction, preserving
sharing of let-bound variables. This level of inlining is com-
mon for the inner loops of crypto primitives, and it will also
simplify the static analysis described in the next subsection.

C. Word-Size Inference

Up to this point, we have derived code that looks almost
exactly like the assembly code we want to produce. The
code is structured to avoid overflows when run with fixed-
precision integers, but so far it is only proven correct for
natural numbers. The final major step is to infer a range of
possible values for each variable, allowing us to assign each
one a register or stack-allocated variable of the appropriate bit
width.

The bounds-inference pass works by standard abstract inter-
pretation with intervals. As inputs, we require lower and upper
bounds for the integer values of all arguments of a function.
These bounds are then pushed through all operations to infer
bounds for temporary variables. Each temporary is assigned
the smallest bit width that can accommodate its full interval.

prime architecture # limbs base representation (distributing large x into x0...xn)
2256−2224+2192+296−1
(P-256)

64-bit 4 264 x = x0 + 264x1 + 2128x2 + 2192x3

2255 − 19 (Curve25519) 64-bit 5 251 x = x0 + 251x1 + 2102x2 + 2153x3 + 2204x4
2255 − 19 (Curve25519) 32-bit 10 225.5 x = x0 + 226x1 + 251x2 + 277x3 + ...+ 2204x8 + 2230x9
2448 − 2224 − 1 (p448) 64-bit 8 256 x = x0 + 256x1 + 2112x2 + ...+ 2392x7
2127 − 1 64-bit 3 242.5 x = x0 + 243x1 + 285x2

Fig. 2: Examples of big-integer representations for different primes and integer widths

As an artificial example, assume the input bounds
a1, a2, a3, b1 ∈ [0, 231]; b2, b3 ∈ [0, 230]. The analysis con-
cludes n1 ∈ [0, 232]; n2, n3 ∈ [0, 230 + 231]. The first
temporary is just barely too big to fit in a 32-bit register,
while the second two will fit just fine. Therefore, assuming
the available temporary sizes are 32-bit and 64-bit, we can
transform the code with precise size annotations.

let n1 : N264 = a1 + b1 in

let n2 : N232 = a2 + b2 in

let n3 : N232 = a3 + b3 in

[n1, n2, n3]

Note how we may infer different temporary widths based on
different bounds for arguments. As a result, the same primitive
inlined within different larger procedures may get different
bounds inferred. World-champion code for real algorithms
takes advantage of this opportunity.

This phase of our pipeline is systematic enough that we
chose to implement it as a certified compiler. That is, we define
a type of abstract syntax trees (ASTs) for the sorts of programs
that earlier phases produce, we reify those programs into our
AST type, and we run compiler passes written in Coq’s Gallina
functional programming language. Each pass is proved correct
once and for all, as Section IV explains in more detail.

D. Compilation To Constant-Time Machine Code

What results is straightline code very similar to that written
by hand by experts, represented as ASTs in a simple lan-
guage with arithmetic and bitwise operators. Our correctness
proofs connect this AST to specifications in terms of integer
arithmetic, such as the one for add above. All operations
provided in our lowest-level AST are implemented with input-
independent execution time in many commodity compilers
and processors, and if so, our generated code is trivially
free of timing leaks. Each function is pretty-printed as C
code and compiled with a normal C compiler, ready to be
benchmarked or included in a library. We are well aware that
top implementation experts can translate C to assembly better
than the compilers, and we do not try to compete with them:
while better instruction scheduling and register allocation
for arithmetic-heavy code would definitely be valuable, it is
outside the scope of this project. Nevertheless, we are excited
to report that our library generates the fastest-known C code
for all operations we have benchmarked (Section V).

III. ARITHMETIC TEMPLATE LIBRARY

Recall Section II-A’s toy add function for little-endian
big integers. We will now describe our full-scale library,
starting with the core unsaturated arithmetic subset, the foun-
dation for all big-integer arithmetic in our development. For
those who prefer to read code, we suggest src/Demo.v
in the framework’s source code, which contains a succinct
standalone development of the unsaturated-arithmetic library
up to and including prime-shape-aware modular reduction.
The concrete examples derived in this section are within
established implementation practice, and an expert would be
able to reproduce them given an informal description of the
strategy. Our contribution is to encode this general wisdom
in concrete algorithms and provide these with correctness
certificates without sacrificing the programmer’s sanity.

A. Multi-Limbed Arithmetic

Cryptographic modular arithmetic implementations dis-
tribute very large numbers across smaller “limbs” of 32- or 64-
bit integers. Fig. 2 shows a small sample of fast representations
for different primes. Notice that many of these implementa-
tions use bases other than 232 or 264, leaving bits unused in
each limb: these are called unsaturated representations. Con-
versely, the ones using all available bits are called saturated.

Another interesting feature shown in the examples is that
the exponents of some bases, such as the original 32-bit
Curve25519 representation [10], are not whole numbers. In the
actual representation, this choice corresponds to an alternating
pattern, so “base 225.5” uses 26 bits in the first limb, 25 in the
second, 26 in the third, and so on. Because of the alternation,
these are called mixed-radix bases, as opposed to uniform-
radix ones.

These unorthodox big integers are fast primarily because
of a specific modular-reduction trick, which is most efficient
when the number of bits in the prime corresponds to a limb
boundary. For instance, reduction modulo 2255 − 19 is fastest
when the bitwidths of a prefix of limbs sum to 255. Every
unsaturated representation in our examples is designed to
fulfill this criterion.

B. Partial Modular Reduction

Suppose we are working modulo a k-bit prime m. Multiply-
ing two k-bit numbers can produce up to 2k bits, potentially
much larger than m. However, if we only care about what
the result is mod m, we can perform a partial modular

s× t = 1× s0t0 + 243 × s0t1 + 285 × s0t2
+ 243 × s1t0 + 286 × s1t1 + 2128 × s1t2

+ 285 × s2t0 + 2128 × s2t1 + 2170 × s2t2
= s0t0 + 243(s0t1 + s1t0) + 285(s0t2 + 2s1t1 + s2t0) + 2127(2s1t2 + 2s2t1) + 2170 × s2t2

Fig. 3: Distributing terms for multiplication mod 2127 − 1

reduction to reduce the upper bound while preserving modular
equivalence. (The reduction is “partial” because the result is
not guaranteed to be the minimal residue.)

The most popular choices of primes in elliptic-curve
cryptography are of the form m = 2k − cl2

tl − . . . −
c02

t0 , encompassing what have been called “generalized
Mersenne primes,” “Solinas primes,” “Crandall primes,”
“pseudo-Mersenne primes,” and “Mersenne primes.” Although
any number could be expressed this way, and the algorithms
we describe would still apply, choices of m with relatively
few terms (l� k) and small ci facilitate fast arithmetic.

Set s = 2k and c = cl2
tl + . . . + c02

t0 , so m = s − c. To
reduce x mod m, first split x by finding a and b such that
x = a + sb. Then, a simple derivation yields a division-free
procedure for partial modular reduction.

x mod m = (a+ sb) mod (s− c)
= (a+ (s− c)b+ cb) mod (s− c)
= (a+ cb) mod m

The choice of a and b does not further affect the correctness
of this formula, but it does influence how much the input is
reduced: picking a = x and b = 0 would make this formula
a no-op. One might pick a = x mod s, although the formula
does not require it. Here is where careful choices of big-integer
representation help: having s be at a limb boundary allows for
a good split without any computation!

Our Coq proof of this trick is reproduced here:

Lemma reduction_rule a b s c (_: s-c <> 0)
: (a + s * b) mod (s - c) =
(a + c * b) mod (s - c).

Proof.
replace (a+s*b) with ((a+c*b)+b*(s-c)).
rewrite add_mod,mod_mult,add_0_r,mod_mod.
all: auto; nsatz.

Qed.

C. Example: Multiplication Modulo 2127 − 1

Before describing the general modular-reduction algorithm
implemented in our library, we will walk through multiplica-
tion specialized to just one modulus and representation. To
simplify matters a bit, we use the (relatively) small modulus
2127−1. Say we want to multiply 2 numbers s and t in its field,
with those inputs broken up as s = s0 + 243s1 + 285s2 and
t = t0 + 243t1 + 285t2. Distributing multiplication repeatedly
over addition gives us the answer form shown in Fig. 3.

We format the first intermediate term suggestively: down
each column, the powers of two are very close together,
differing by at most one. Therefore, it is easy to add down
the columns to form our final answer, split conveniently into
digits with integral bit widths.

At this point we have a double-wide answer for multiplica-
tion, and we need to do modular reduction to shrink it down
to single-wide. For our example, the last two digits can be
rearranged so that the modular-reduction rule applies:

2127(2s1t2 + 2s2t1) + 2170s2t2 (mod 2127 − 1)

= 2127((2s1t2 + 2s2t1) + 243s2t2) (mod 2127 − 1)

= 1((2s1t2 + 2s2t1) + 243s2t2) (mod 2127 − 1)

As a result, we can merge the second-last digit into the first
and merge the last digit into the second, leading to this final
formula specifying the limbs of a single-width answer:

(s0t0 + 2s1t2 + 2s2t1) + 243(s0t1 + s1t0 + s2t2)

+ 285(s0t2 + 2s1t1 + s2t0)

D. Associational Representation

As is evident by now, the most efficient code makes use
of sophisticated and specific big-number representations, but
many concrete implementations operate on the same set of
underlying principles. Our strategy of writing high-level tem-
plates allows us to capture the underlying principles in a fully
general way, without committing to a run-time representation.
Abstracting away the implementation-specific details, like the
exact number of limbs or whether the base system is mixed-
or uniform-radix, enables simple high-level proofs of all
necessary properties.

A key insight that allows us to simplify the arithmetic
proofs is to use multiple different representations for big
integers, as long as changes between these representations can
be simplified away once the prime shape is known. We have
two main representations of big integers in the core library:
associational and positional. A big integer in associational
form is represented as a list of pairs; the first element in each
pair is a weight, known at compile time, and the second is
a runtime value. The decimal number 95 might be encoded
as [(16, 5); (1, 15)], or equivalently as [(1, 5);
(10, 9)] or [(1, 1); (1, 6); (44, 2)]. As long
as the sum of products is correct, we do not care about
the order, whether the weights are powers of each other, or
whether there are multiple pairs of equal weight.

Definition mul (p q:list(Z*Z)) : list(Z*Z)
:= flat_map (λt,

map (λt’,(fst t*fst t’, snd t*snd t’))
q) p.

Lemma eval_map_mul (a x:Z) (p:list (Z*Z))
: eval (map (λt, (a*fst t, x*snd t)) p)
= a*x * eval p.

Proof. induction p; push; nsatz. Qed.

Lemma eval_mul p q
: eval (mul p q) = eval p * eval q.

Proof.
induction p; cbv [mul]; push; nsatz. Qed.

Fig. 4: Definition and correctness proof of multiplication

In associational format, arithmetic operations are extremely
easy to reason about. Addition is just concatenation of the
lists. Schoolbook multiplication (see Fig. 4) is also simple:
(a1 · x1 + . . .)(b1 · y1 + . . .) = (a1b1 · x1y1 + . . .), where
a1b1 is the new compile-time-known weight. Because of the
flexibility allowed by associational representation, we do not
have to worry about whether the new compile-time weight
produced is actually in the base. If we are working with the
base 225.5 in associational representation, and we multiply two
pairs that both have weight 226, we can just keep the 252 rather
than the base’s 251 weight.

Positional representation, on the other hand, uses lists of
runtime values with weight functions. There is only one
runtime value for each weight, and order matters. This format
is closer to how a number would actually be represented at run-
time. Separating associational from positional representations
lets us separate reasoning about arithmetic from reasoning
about making weights line up. Especially in a system that must
account for mixed-radix bases, the latter step is nontrivial and
is better not mixed with other reasoning.

Fig. 5 shows the code and proofs for conversion from
associational to positional format, including the fixing of
misaligned weights. The helper function place takes a pair
t = (w, x) (compile-time weight and runtime value) and
recursively searches for the highest-index output of the weight
function that w is a multiple of. After finding it, place returns
an index i and the runtime value to be added at that index:
(w/weighti ·x). Then, from_associational simply adds
each limb at the correct index.

The modular-reduction trick we explained in Section III-B
can also be succinctly represented in associational format (Fig.
6). First we define split, which partitions the list, separating
out pairs with compile-time weights that are multiples of the
number at which we are splitting (s, in the code). Then it
divides all the weights that are multiples of s by s and returns
both lists. The reduce function simply multiplies the “high”
list by c and adds the result to the “low” list. Using the mul we
defined earlier recreates the folklore modular-reduction pattern
for prime shapes in which c is itself multi-limb.

Fixpoint place (t:Z*Z) (i:nat) : nat*Z :=
if dec (fst t mod weight i = 0) then
let c:=fst t / weight i in (i, c*snd t)

else match i with
| S i’ => place t i’
| O => (O, fst t*snd t) end.

Definition from_associational n p :=
List.fold_right (λt,

let wx := place t (pred n) in
add_to_nth (fst wx) (snd wx))

(zeros n) p.

Lemma place_in_range (t:Z*Z) (n:nat)
: (fst (place t n) < S n)%nat.
Proof.
cbv [place]; induction n; break_match;
autorewrite with cancel_pair; omega. Qed.

Lemma weight_place t i
: weight (fst(place t i)) * snd(place t i)
= fst t * snd t.

Proof. (* ... 4 lines elided ... *) Qed.

Lemma eval_from_associational {n} p
: eval (from_associational (S n) p)
= Associational.eval p.

Proof.
cbv [from_associational]; induction p;
push;
try pose proof place_in_range a n;
try omega; try nsatz. Qed.

Fig. 5: Coq definition and selected correctness proofs of
conversion from associational to positional representation

E. Carrying

In unsaturated representations, it is not necessary to carry
immediately after every addition. For example, with 51-bit
limbs on a 64-bit architecture, it would take 13 additions to
risk overflow. Choosing which limbs to carry and when is
part of the design and is critical for keeping the limb values
bounded. Generic operations are easily parameterized on carry
strategies, for example “after each multiplication carry from
limb 4 to limb 5, then from limb 0 to limb 1, then from limb
5 to limb 6,” etc. The library includes a conservative default.

F. Saturated Arithmetic

The code described so far was designed with unsaturated
representations in mind. However, unsaturated-arithmetic per-
formance degrades rapidly when used with moduli that it
is not a good match for, so older curves such as P-256
need to be implemented using saturated arithmetic. Basic
arithmetic on saturated digits is complicated by the fact that
addition and multiplication outputs may not fit in single words,
necessitating the use of two-output addition and multiplication

Definition split (s:Z) (p:list (Z*Z))
: list(Z*Z)*list(Z*Z) :=

let hl :=
partition (λt, fst t mod s =? 0) p in

(snd hl,
map (λt, (fst t / s, snd t)) (fst hl)).

Definition reduce(s:Z)(c:list _)(p:list _)
: list(Z*Z) :=

let lh := split s p in
fst lh ++ mul c (snd lh).

Lemma eval_split s p (s_nz:s<>0) :
eval (fst (split s p))
+ s * eval (snd (split s p))

= eval p.
Proof. (* ... (7 lines elided) *) Qed.

Lemma eval_reduce s c p
(s_nz:s<>0)(m_nz:s-eval c<>0) :

eval (reduce s c p) mod (s - eval c)
= eval p mod (s - eval c).

Proof. cbv [reduce]; push.
rewrite<-reduction_rule,eval_split; auto.
Qed.

Fig. 6: Coq code for prime-shape-sensitive modular reduction

Definition from_associational
n (p:list (list Z)) :=

List.fold_right (λt,
let p := place t (pred n) in
cons_to_nth (fst p) (snd p)) (nils n) p.

Fig. 7: Conversion from associational to columns

instructions. While the partial products in Fig. 4 also need to
be stored in pairs of registers, the halves are never separated,
avoiding the need to reason about their representation. On
the other hand, saturated-arithmetic algorithms can be seen as
treating carry bits (and the low and high halves of a multipli-
cation) as separate limbs. This conceptual framework allows
us to reuse most of our unsaturated-associational-arithmetic
procedures on saturated representations while still generating
the expected low-level code that differs significantly from that
of unsaturated arithmetic.

First, we write another version of mul that looks very
similar to the unsaturated one but uses a two-output multipli-
cation instruction to compute the partial product of (a, x) and
(b, y) as let xy := mul x y in [(a*b, fst xy);
(a*b*bound, snd xy)] instead of [(a*b, x*y)].

Second, rather than using the unsaturated
from_associational, we first convert to an intermediate
representation we call columns, named after the conventional
layout of partial products during pencil-and-paper
multiplication. While associational representations are
lists of pairs of integers (list (Z * Z)) and positional

Lemma S2_mod
: eval (sat_add S1 (scmul q m)) mod m
= eval S1 mod m.

Proof. push; zsimplify; auto. Qed.

Fig. 8: Proof that adjusting S to be 0 mod m preserves the
correct value modm

ones are lists of integers (list Z), columns representations
are lists of lists of integers (list (list Z)). Columns
representations are very similar to positional ones, except
that the values at each position have not yet been added
together. Starting from the columns representation, we can
add terms together in a specific order so that carry bits
are used right after they are produced, enabling them to
be stored in flag registers in assembly code. The code to
convert from associational to columns is very similar to
associational-to-positional conversion (Fig. 7).

With these changes in place, much of the code shown
before for associational works on positional representa-
tions as well. For instance, the partial modular-reduction
implementation still applies unchanged; using the new
from_associational is sufficient. The takeaway here
is that even completely changing the underlying hardware
instructions we used for basic arithmetic did not require
redoing all the work from unsaturated representations.

Our most substantial use of saturated arithmetic was for
Montgomery modular reduction, shown in full earlier in Fig.
1. For moduli m without convenient special structure, there
is not much room to optimize the computation of ab mod m.
Instead, it pays off to keep all intermediate values a in a scaled
form aR mod m for some parameter R and instead optimize
the computation of (aR)(bR)R−1 mod m = (ab)R mod m.
We will use underlines to denote the (unique) Montgomery
forms of numbers: a = aR mod m.

First, consider the simple case where S = ab is divisible
by R: we can simply divide it by R, ignoring the modulus
m completely. To make division by R fast, we use a minimal
saturated representation for S and pick R to match the weight
of some limb. This way, dividing by R needs no code at all:
simply forget about the less significant limbs!

Of course, S is extremely unlikely to be divisible by
R. However, since we only care about the answer modm,
we can add a multiple of m to adjust S to be 0 mod R.
In particular, we want to add qm such that qm mod R =
−(S mod R). Multiplying both sides by m−1 mod R gives
q = (−m−1 mod R)(S mod R) mod R, which is very cheap
to compute: the first factor is a compile-time constant, and
S mod R is simply the limbs of S below R. The Coq proof
of this step of our word-by-word implementation is in Fig. 8.

This procedure is further optimized based on the observation
that it only acts on the higher limbs of S additively. For n-
limb a, instead of first computing ab and then dividing it by
R = rn, it is fine to divide eagerly by r after multiplying b
with a single limb of a – adding the partial products with the

Given eval S < eval m+ eval B;
To show:
eval (div_r (add (add S (scmul a B)) (scmul q m)))

< eval m+ eval B

(eval S + a ∗ eval B + q ∗ eval m)/r < eval m+ eval B

(eval m ∗ r + r ∗ eval B − 1)/r < eval m+ eval B

eval m+ eval B − 1 < eval m+ eval B

Fig. 9: Intermediate goals of the proof that the word-by-
word Montgomery reduction state value remains bounded by
a constant, generated by single-stepping our proof script

more significant limbs of a commutes with adding multiples
of m. Even better, adding a multiple of m and a multiple of
b can only increase the length of S by one limb, balancing
out the loss of one limb when dividing S by r and allowing
for an implementation that loops through limbs of a while
operating in-place on S. The proof of the last fact is delicate
– for example, it is not true that one of the additions always
produces a newly nonzero value in the most significant limb
and the other never does. In our library, this subtlety is handled
by a 15-line/100-word proof script; the high-level steps, shown
in Fig. 9, admittedly fail to capture the amount of thought that
was required to find the invariant that makes the bounds line
up exactly right.

IV. CERTIFIED BOUNDS INFERENCE

Recall from Section II-B how we use partial evaluation
to specialize the functions from the last section to particular
parameters. The resulting code is elementary enough that it
becomes more practical to apply relatively well-understood
ideas from certified compilers. That is, as sketched in Section
II-C, we can define an explicit type of program abstract syntax
trees (ASTs), write compiler passes over it as Coq functional
programs, and prove those passes correct.

A. Abstract Syntax Trees

The results of partial evaluation fit, with minor massaging,
into this intermediate language:

Base types b
Types τ ::= b | unit | τ × τ

Variables x
Operators o

Expressions e ::= x | o(e) | () | (e, e)
| let (x1, . . . , xn) = e in e

Types are trees of pair-type operators × where the leaves
are one-element unit types and base types b, the latter of which
come from a domain that is a parameter to our compiler. It
will be instantiated differently for different target hardware
architectures, which may have different primitive integer types.
When we reach the certified compiler’s part of the pipeline,
we have converted earlier uses of lists into tuples, so we can
optimize away any overhead of such value packaging.

Another language parameter is the set of available primitive
operators o, each of which takes a single argument, which

is often a tuple of base-type values. Our let construct bakes
in destructuring of tuples, in fact using typing to ensure that
all tuple structure is deconstructed fully, with variables bound
only to the base values at a tuple’s leaves. Our deep embedding
of this language in Coq uses dependent types to enforce that
constraint, along with usual properties like lack of dangling
variable references and type agreement between operators and
their arguments.

Several of the key compiler passes are polymorphic in the
choices of base types and operators, but bounds inference is
specialized to a set of operators. We assume that each of the
following is available for each type of machine integers (e.g.,
32-bit vs. 64-bit).

Integer literals: n
Unary arithmetic operators: − e
Binary arithmetic operators: e1 + e2, e1 − e2, e1 × e2
Bitwise operators: e1 � e2, e1 � e2, e1 & e2, e1 | e2
Conditionals: if e1 6= 0 then e2 else e3
Carrying: addWithCarry(e1, e2, c), carryOfAdd(e1, e2, c)
Borrowing: subWithBorrow(c, e1, e2), borrowOfSub(c, e1, e2)
Two-output multiplication: mul2(e1, e2)

We explain only the last three categories, since the earlier
ones are familiar from C programming. To chain together
multiword additions, as discussed in the prior section, we need
to save overflow bits (i.e., carry flags) from earlier additions, to
use as inputs into later additions. The addWithCarry operation
implements this three-input form, while carryOfAdd extracts
the new carry flag resulting from such an addition. Analo-
gous operators support subtraction with borrowing, again in
the grade-school-arithmetic sense. Finally, we have mul2 to
multiply two numbers to produce a two-number result, since
multiplication at the largest available word size may produce
outputs too large to fit in that word size.

All operators correspond directly to common assembly
instructions. Thus the final outputs of compilation look very
much like assembly programs, just with unlimited supplies of
temporary variables, rather than registers.

Operands O ::= x | n
Expressions e ::= let (x1, . . . , xn) = o(O, . . . , O) in e

| (O, . . . , O)

We no longer work with first-class tuples. Instead, programs
are sequences of primitive operations, applied to constants
and variables, binding their (perhaps multiple) results to new
variables. A function body, represented in this type, ends in
the function’s (perhaps multiple) return values.

Such functions are easily pretty-printed as C code, which is
how we compile them for our experiments. Note also that
the language enforces the constant time security property
by construction: the running time of an expression leaks no
information about the values of the free variables. We do
hope, in follow-on work, to prove that a particular compiler
preserves the constant-time property in generated assembly.
For now, we presume that popular compilers like GCC and
Clang do preserve constant time, modulo the usual cycle

of occasional bugs and bug fixes. (One additional source-
level restriction is important, forcing conditional expressions
to be those supported by native processor instructions like
conditional move.)

B. Phases of Certified Compilation

To begin the certified-compilation phase of our pipeline, we
need to reify native Coq programs as terms of this AST type.
To illustrate the transformations we perform on ASTs, we walk
through what the compiler does to an example program:

let (x1, x2, x3) = x in

let (y1, y2) = ((let z = x2 × 1× x3 in z + 0), x2) in

y1 × y2 × x1

The first phase is linearize, which cancels out all intermediate
uses of tuples and immediate let-bound variables and moves
all lets to the top level.

let (x1, x2, x3) = x in

let z = x2 × 1× x3 in

let y1 = z + 0 in

y1 × x2 × x1

Next is constant folding, which applies simple arithmetic
identities and inlines constants and variable aliases.

let (x1, x2, x3) = x in

let z = x2 × x3 in

z × x2 × x1

At this point we run the core phase, bounds inference, the
one least like the phases of standard C compilers. The phase
is parameterized over a list of available fixed-precision base
types with their ranges; for our example, assume the hardware
supports bit sizes 8, 16, 32, and 64. Intervals for program
inputs, like x in our running example, are given as additional
inputs to the algorithm. Let us take them to be as follows:
x1 ∈ [0, 28], x2 ∈ [0, 213], x3 ∈ [0, 218]. The output of the
algorithm has annotated each variable definition and arithmetic
operator with a finite type.

let (x1 : N216 , x2 : N216 , x3 : N232) = x in

let z : N232 = x2 ×N
232

x3 in

z ×N
264

x2 ×N
264

x1

Our biggest proof challenge here was in the interval rules for
bitwise operators applied to negative numbers, a subject mostly
missing from Coq’s standard library.

C. Important Design Choices

Most phases of the compiler use a term encoding called
parametric higher-order abstract syntax (PHOAS) [11]. Briefly,
this encoding uses variables of the metalanguage (Coq’s
Gallina) to encode variables of the object language, to avoid
most kinds of bookkeeping about variable environments; and
for the most part we found that it lived up to that promise.
However, we needed to convert to a first-order representation
(de Bruijn indices) and back for the bounds-inference phase,
essentially because it calls for a forward analysis followed by

a backward transformation: calculate intervals for variables,
then rewrite the program bottom-up with precise base types
for all variables. We could not find a way with PHOAS to
write a recursive function that returns both bounds information
and a new term, taking better than quadratic time, while
it was trivial to do with first-order terms. We also found
that the established style of term well-formedness judgment
for PHOAS was not well-designed for large, automatically
generated terms like ours: proving well-formedness would
frequently take unreasonably long, as the proof terms are
quadratic in the size of the syntax tree. The fix was to
switch well-formedness from an inductive definition into an
executable recursive function that returns a linear number of
simple constraints in propositional logic.

D. Extensibility with Nonobvious Algebraic Identities

Classic abstract interpretation with intervals works sur-
prisingly well for most of the cryptographic code we have
generated. However, a few spans of code call for some algebra
to establish the tightest bounds. We considered extending
our abstract interpreter with general algebraic simplification,
perhaps based on E-graphs as in SMT solvers [12], but in
the end we settled on an approach that is both simpler and
more accommodating of unusual reasoning patterns. The best-
known among our motivating examples is Karatsuba’s multi-
plication, which expresses a multi-digit multiplication in a way
with fewer single-word multiplications (relatively slow) but
more additions (relatively fast), where bounds checking should
recognize algebraic equivalence to a simple multiplication.
Naive analysis would treat (a + b)(c + d) − ac equivalently
to (a + b)(c + d) − xy, where x and y are known to be
within the same ranges as a and c but are not necessarily
equal to them. The latter expression can underflow. We add a
new primitive operator equivalently such that, within the high-
level functional program, we can write the above expression
as equivalently ((a+ b)(c+ d)− ac, ad+ bc+ bd). The latter
argument is used for bounds analysis. The soundness theorem
of bounds analysis requires, as a side condition, equality for
all pairs of arguments to equivalently. These side conditions
are solved automatically during compilation using Coq tactics,
in this case ring algebra. Compilation then replaces any
equivalently (e1, e2) with just e1.

V. EXPERIMENTAL RESULTS

The first purpose of this section is to confirm that imple-
menting optimized algorithms in high-level code and then sep-
arately specializing to concrete parameters actually achieves
the expected performance. Given the previous sections, this
conclusion should not be surprising: as code generation is
extremely predictable, it is fair to think of the high-level
implementations as simple templates for low-level code. Thus,
it would be possible write new high-level code to mimic every
low-level implementation. Such a strategy would, of course,
be incredibly unsatisfying, although perhaps still worthwhile
as a means to reduce effort required for correctness proofs.
Thus, we wish additionally to demonstrate that the two simple

generic-arithmetic implementations discussed in Sections III-B
and III-F are sufficient to achieve good performance in all
cases. Furthermore, we do our best to call out differences
that enable more specialized implementations to be faster,
speculating on how we might modify our framework in the
future based on those differences.

A. X25519 Scalar Multiplication

We measure the number of CPU cycles different imple-
mentations take to multiply a secret scalar and a public
Curve25519 point (represented by the x coordinate in Mont-
gomery coordinates). Despite the end-to-end task posed for
this benchmark, we believe the differences between implemen-
tations we compare against lie in the field-arithmetic imple-
mentation – all use the same scalar-multiplication algorithm
and two almost-identical variants of the Montgomery-curve
x-coordinate differential-addition formulas.

The benchmarks were run on an Intel Broadwell i7-5600U
processor in a kernel module with interrupts, power manage-
ment, Hyper Threading, and Turbo Boost features disabled.
Each measurement represents the average of a batch of 15,000
consecutive trials, with time measured using the RDTSC
instruction and converted to CPU cycles by multiplying by
the ratio of CPU and timestamp-counter clock speeds. C code
was compiled using gcc 7.3 with -O3 -march=native
-mtune=native -fwrapv (we also tried clang 5.0, but
it produced ∼10% slower code for the implementations here).

Implementation CPU cycles
amd64-64, asm 151586
this work B, 64-bit 152195
sandy2x, asm 154313
hacl-star, 64-bit 154982
donna64, 64-bit C 168502
this work A, 64-bit 174637
this work, 32-bit 310585
donna32, 32-bit C 529812

In order, we compare against amd64-64 and sandy2x,
the fastest assembly implementations from SUPERCOP [13]
that use scalar and vector instructions respectively; the ver-
ified X25519 implementation from the HACL∗ project [4];
and the best-known high-performance C implementation
curve25519-donna, in both 64-bit and 32-bit variants.
The field arithmetic in both amd64-64 and hacl-star has
been verified using SMT solvers [1], [3]. We do not claim
that the ranking in this table represents inherent differences
between the 5 fastest implementations – we would be entirely
unsurprised if a seemingly irrelevant change in the CPU,
compiler, or source code rearranged them.

We report on our code generated using the standard repre-
sentations for both 32-bit and 64-bit, though we are primarily
interested in the latter, since we benchmark on a 64-bit
processor. We actually report on two of our 64-bit variants,
both of which have correctness proofs of the same strength.
Variant A is the output of the toolchain described in Section
III. Variant B contains an additional implementation grouping

multiplications by the modular-reduction coefficient c = 19
with one of the inputs of the multiplication instead of the
output (19× (a× b) −→ (19× a)× b). This algebra pays off
because 19×a can be computed using a 64-bit multiplication,
whereas 19×(ab) would require a significantly more expensive
128-bit multiplication. We currently implement this trick for
just 2255 − 19 as an ad-hoc code replacement after partial
evaluation but before word-size inference, using the Coq
ring algebra tactic to prove that the code change does not
change the output. We are planning on incorporating a more
general version of this optimization into the main pipeline,
after a planned refactoring to add automatic translation to
continuation-passing style (see Section VII).

The results of a similar benchmark on an earlier version of
our pipeline were good enough to convince the maintainers
of the BoringSSL library to adopt our methodology, resulting
in this Curve25519 code being shipped in Chrome 64 and
used by default for TLS connection establishment in other
Google products and services. Previously, BoringSSL included
the amd64-64 assembly code and a 32-bit C implementation
as a fallback, which was the first to be replaced with our
generated code. Then, the idea was raised of taking advantage
of lookup tables to optimize certain point ECC multiplications.
While the BoringSSL developers had not previously found
it worthwhile to modify 64-bit assembly code and review
the changes, they made use of our code-generation pipeline
(without even consulting us, the tool authors) and installed
a new 64-bit C version. The new code (our generated code
linked with manually written code using lookup tables) was
more than twice as fast as the old version and was easily
chosen for adoption, enabling the retirement of amd64-64
from BoringSSL.

B. P-256 Mixed Addition

Next, we benchmark our Montgomery modular arithmetic
as used for in-place point addition on the P-256 elliptic curve
with one precomputed input (Jacobian += affine). A scalar-
multiplication algorithm using precomputed tables would use
some number of these additions depending on the table
size. The assembly-language implementation nistz256 was
reported on by Gueron and Krasnov [14] and included in
OpenSSL; we also measure its newer counterpart that makes
use of the ADX instruction-set extension. The 64-bit C code
we benchmark is also from OpenSSL and uses unsaturated-
style modular reduction, carefully adding a couple of multiples
of the prime each time before performing a reduction step
with a negative coefficient to avoid underflow. These P-
256 implementations here are unverified. The measurement
methodology is the same as for our X25519 benchmarks,
except that we did not manage to get nistz256 running in
a kernel module and report userspace measurements instead.

Implementation fastest clang gcc icc
nistz256 +ADX ˜550
nistz256 AMD64 ˜650
this work A 1143 1811 1828 1143
OpenSSL, 64-bit C 1151 1151 2079 1404
this work B 1343 1343 2784 1521

Saturated arithmetic is a known weak point of current com-
pilers, resulting in implementors either opting for alternative
arithmetic strategies or switching to assembly language. Our
programs are not immune to these issues: when we first ran
our P-256 code, it produced incorrect output because gcc
7.1.1 had generated incorrect code2; clang 4.0 exited with
a mere segmentation fault.3 Even in later compiler versions
where these issues have stopped appearing, the code generated
for saturated arithmetic varies a lot between compilers and is
obviously suboptimal: for example, there are ample redundant
moves of carry flags, perhaps because the compilers do not
consider flag registers during register allocation. Furthermore,
expressing the same computation using intrinsics such as
_mulx_u64 (variant A in the table) or using uint128
and a bit shift (variant B) can produce a large performance
difference, in different directions on different compilers.

The BoringSSL team had a positive enough experience with
adopting our framework for Curve25519 that they decided to
use our generated code to replace their P-256 implementation
as well. First, they replaced their handwritten 64-bit C im-
plementation. Second, while they had never bothered to write
a specialized 32-bit P-256 implementation before, they also
generated one with our framework. nistz256 remains as an
option for use in server contexts where performance is critical
and where patches can be applied quickly when new bugs
are found. The latter is not a purely theoretical concern –
Appendix A contains an incomplete list of issues discovered
in previous nistz256 versions.

The two curves thus generated with our framework for Bor-
ingSSL together account for over 99% of ECDH connections.
Chrome version 65 is the first release to use our P-256 code.

C. Benchmarking All the Primes

Even though the primes supported by the modular-reduction
algorithms we implemented vastly outnumber those actually
used for cryptography, we could not resist the temptation to
do a breadth-oriented benchmark for plausible cryptographic
parameters. The only other implementation of constant-time
modular arithmetic for arbitrary modulus sizes we found
is the mpn_sec section of the GNU Multiple Precision
Arithmetic Library4. We also include the non-constant-time
mpn interface for comparison. The list of primes to test was
generated by scraping the archives of the ECC discussion
list curves@moderncrypto.org, finding all supported
textual representations of prime numbers.

2https://gcc.gnu.org/bugzilla/show bug.cgi?id=81300, https://gcc.gnu.org/
bugzilla/show bug.cgi?id=81294

3https://bugs.llvm.org/show bug.cgi?id=24943
4https://gmplib.org/

One measurement in Fig. 10 corresponds to 1000 sequential
computations of a 256-bit Montgomery ladder, aiming to sim-
ulate cryptographic use accurately while still constraining the
source of performance variation to field arithmetic. A single
source file was used for all mpn_sec-based implementations;
the modulus was specified as a preprocessor macro to allow
compiler optimizations to try their best to specialize GMP
code. Our arithmetic functions were instantiated using standard
heuristics for picking the compile-time parameters based on
the shorthand textual representation of the prime, picking a
champion configuration out of all cases where correctness
proof succeeds, with two unsaturated and one Montgomery-
based candidates. The 64-bit trials were run on an x86 Intel
Haswell processor and 32-bit trials were run on an ARMv7-A
Qualcomm Krait (LG Nexus 4).

We see a significant performance advantage for our code,
even compared to the GMP version that “cheats” by leaking
secrets through timing. Speedups range between 1.25X and
10X. Appendix B includes the full details, with Tables I and
II recording all experimental data points, including for an
additional comparison implementation in C++. In our current
experiments, compilation of saturated arithmetic in Coq times
out for a handful of larger primes. There is no inherent reason
for this slowness, but our work-in-progress reimplementation
of this pipeline (Section VII) is designed to be executable
using the Haskell extraction feature of Coq, aiming to sidestep
such performance unpredictability conclusively.

VI. RELATED WORK

A. Verified Elliptic-Curve Cryptography

Several past projects have produced verified ECC imple-
mentations. We first summarize them and then give a unified
comparison against our new work.

Chen et al. [1] verified an assembly implementation of
Curve25519, using a mix of automatic SAT solving and
manual Coq proof for remaining goals. A later project by
Bernstein and Schwabe [2], described as an “alpha test,”
explores an alternative workflow using the Sage computer-
algebra system. This line of work benefits from the chance
for direct analysis of common C and assembly programs for
unsaturated arithmetic, so that obviously established standards
of performance can be maintained.

Vale [5] supports compile-time metaprogramming of as-
sembly code, with a cleaner syntax to accomplish the same
tasks done via Perl scripts in OpenSSL. There is a superficial
similarity to the flexible code generation used in our own
work. However, Vale and OpenSSL use comparatively shallow
metaprogramming, essentially just doing macro substitution,
simple compile-time offset arithmetic, and loop unrolling. Vale
has not been used to write code parameterized on a prime
modulus (and OpenSSL includes no such code). A verified
static analysis checks that assembly code does not leak secrets,
including through timing channels.

HACL∗ [4] is a cryptographic library implemented and
verified in the F∗ programming language, providing all the
functionality needed to run TLS 1.3 with the latest primitives.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81300
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81294
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81294
https://bugs.llvm.org/show_bug.cgi?id=24943
https://gmplib.org/

100 150 200 250 300 350 400 450 500 550
0

0.5

1

1.5

log2(prime)

Ti
m

e
(s

ec
on

ds
)

64-Bit Field Arithmetic Benchmarks

GMP mpn sec API GMP mpn API

this work

100 150 200 250 300 350 400 450 500 550
0

5

10

15

log2(prime)

Ti
m

e
(s

ec
on

ds
)

32-Bit Field Arithmetic Benchmarks

GMP mpn sec API GMP mpn API

this work

Fig. 10: Performance comparison of our generated C code vs. handwritten using libgmp

Primitives are implemented in the Low∗ imperative subset
of F∗ [15], which supports automatic semantics-preserving
translation to C. As a result, while taking advantage of
F∗’s high-level features for specification, HACL∗ performs
comparably to leading C libraries. Additionally, abstract types
are used for secret data to avoid side-channel leaks.

Jasmin [6] is a low-level language that wraps assembly-
style straightline code with C-style control flow. It has a Coq-
verified compiler to 64-bit x86 assembly (with other targets
planned), along with support for verification of memory safety
and absence of information leaks, via reductions to Dafny. A
Dafny reduction for functional-correctness proof exists but has
not yet been used in a significant case study.

We compare against these past projects in a few main
claims.

Advantage of our work: first verified high-performance
implementation of P-256. Though this curve is the most
widely used in TLS today, no prior projects had demonstrated
performance-competitive versions with correctness proofs. A
predecessor system to HACL∗ [3] verified more curves, includ-
ing P-256, but in high-level F∗ code, incurring performance
overhead above 100X.

Advantage of our work: code and proof reuse across
algorithms and parameters. A more fundamental appeal of
our approach is that it finally enables the high-performance-
cryptography domain to benefit from pleasant software-
engineering practices of abstraction and code reuse. The code
becomes easier to understand and maintain (and therefore to
prove), and we also gain the ability to compile fast versions of
new algorithm variants automatically, with correctness proofs.
Considering the cited past work, it is perhaps worth emphasiz-
ing how big of a shift it is to do implementation and proving
at a parameterized level: as far as we are aware, no past
project on high-performance verified ECC has ever verified
implementations of multiple elliptic curves or verified multiple
implementations of one curve, targeted at different hardware
characteristics. With our framework, all of those variants can

be generated automatically, at low developer cost; and indeed
the BoringSSL team took advantage of that flexibility.

Advantage of our work: small trusted code base. Every
past project we mentioned includes either an SMT solver or
a computer-algebra system in the trusted code base. Further-
more, each past project also trusts some program-verification
tool that processes program syntax and outputs symbolic
proof obligations. We trust only the standard Coq theorem
prover, which has a proof-checking kernel significantly smaller
than the dependencies just mentioned, and the (rather short,
whiteboard-level) statements of the formal claims that we
make (plus, for now, the C compiler; see below).

Disadvantage of our work: stopping at C rather than
assembly. Several past projects apply to assembly code rather
than C code. As a result, they can achieve higher perfor-
mance and remove the C compiler from the trusted base. Our
generated code is already rather close to assembly, differing
only in the need for some register allocation and instruction
scheduling. In fact, it seems worth pointing out that every
phase of our code-generation pipeline is necessary to get code
low-level enough to be accepted as input by Jasmin or Vale.
We have to admit to nontrivial frustration with popular C
compilers in the crypto domain, keeping us from using them to
bridge this gap with low performance cost. We wish compiler
authors would follow the maxim that, if a programmer takes
handwritten assembly and translates it line-by-line to the
compiler’s input language, the compiler should not generate
code slower than the original assembly. Unfortunately, no
popular compiler seems to obey that maxim today, so we
are looking into writing our own (with correctness proof) or
integrating with one of the projects mentioned above.

Disadvantage of our work: constant-time guarantee mech-
anized only for straightline code. Our development also in-
cludes higher-level cryptographic code that calls the primitives
discribed here, with little innovation beyond comprehensive
functional-correctness proofs. That code is written following

“constant-time” coding rules and thus should be free of timing
side channels barring human error. However, we do not yet do
certified compilation or static analysis for timing leaks on the
higher-level code. To this end, it could be advantageous to take
inspiration from, or adopt, one of the tools mentioned above.

B. Other Related Work

Performance-oriented synthesis of domain-specific code
(without proofs of correctness) has previously been done
using explicit templates (e.g. Template Haskell [16]) and
more sophisticated multistage programming (e.g. Lightweight
Modular Staging (LMS) [17]). More specialized frameworks
along these lines include FFTW [18] and Spiral [19]. Out of
these, our strategy is most similar to the one from LMS, differ-
ing mainly in the choice of using existing (proof-generating)
Coq facilities for partial evaluation and rewriting rather than
implementing them ourselves. While verified compilers (e.g.,
CakeML [20], CompCert [21]) and translation validators [22]
are useful for creating soundly optimized versions of a refer-
ence program, we are not aware of any that could cope with
abstraction-collapsing synthesis as done in this work or LMS.

Myreen and Curello verified a general-purpose big-integer
library [23]. The code uses a single uniform base system, does
not include specialized modular-reduction optimizations, and
does not run in constant time. However, their verification ex-
tends down to AMD64 assembly using verified decompilation.

Verification of cryptographic protocols (e.g., FCF [24],
CertiCrypt [25]) is complementary to this work: given a good
formal specification of a protocol, it can be shown separately
that an implementation corresponds to the protocol (as we do
for elliptic-curve primitives used in TLS) and that the protocol
is secure (out of scope for this paper). The work by Beringer
et al. [26] is a good example of this pattern, composing a
protocol-security proof, a correctness proof for its C-level
implementation, and a correctness proof for the C compiler.

VII. DISCUSSION

We would like to remark on the aspects of elliptic-curve-
cryptography implementation that made this approach work
as well as it did, to aid future application in other contexts.
The most general (and perhaps the most important) takeaway
is that effort put into structuring code in the most instructive
manner possible pays off double during verification, enough
to justify the development of new tooling to make that code
run fast. In cases where generalizing an algorithm makes its
operation and invariants more apparent, we think it simply
makes sense to prove correctness for the general version and
use partial evaluation to derive the desired code, even if a
specialized implementation has already been written.

On the other hand, we do not believe that the phase distinc-
tion between arithmetic and bounds analysis is fundamental,
although it is convenient. When viewing uniform positional
representations as polynomials, this distinction corresponds
to finding a bound on the degree of the polynomial using
partial evaluation and finding bounds on its coefficients us-
ing certified compilation, but cryptographic implementation

literature (e.g. [10]) has treated degree and coefficient ranges
rather similarly. We are aware of one example that would
be simpler if the high-level algorithms operated on tuples
(l, x, h) s.t. l ≤ x ≤ h instead of arbitrary-precision integers x.
The BoringSSL P-256 implementation that was replaced with
our code used prime-shape-specific modular reduction with
negative ci and avoided limb underflow by adding the modulus
to a field element before any addition where the input limb
ranges did not already rule out underflow. A certified compiler
that needs to preserve the exact value of each limb cannot use
this strategy, but it could be encoded in the framework so far
by figuring out when to add the modulus for balance in some
other way in the high-level algorithm.

The bounds-analysis pipeline described in this paper only
works on straight-line code, greatly simplifying the imple-
mentation. It is geared towards being used on the bodies of
inner loops where naively picking the largest available integer
type for each variable would be costly, but temporaries are
numerous enough that picking sizes by hand would be tedious
and error-prone. The analysis could be generalized to loops
and recursion by iterating until convergence, but it is unclear
whether that is called for in any application.

While we do appreciate being able to support a number of
plausibly useful elliptic curves with the same (parametrized)
code and proof, we believe that engineering benefits, especially
simplicity of code and proof, make this approach worth
considering even when targeting a single configuration.

We find it arbitrary and unfortunate that arithmetic algo-
rithms need to be written in continuation-passing style. As
CPS was only necessary for using Coq’s term reduction for
partial evaluation, writing a certified partial evaluator would
be sufficient to avoid it. Preliminary experiments have given
promising results, but we have not finalized the interface yet.
We also expect that replacing the controlled term reduction
with a certified compilation pass would significantly improve
the compilation time.

We would like to shrink our trusted base by connecting
to a certified compiler targeting assembly. However, existing
compilers are not smart enough at mapping the data flow
between instructions onto time and space available on the
hardware. Thus another fruitful future-work area is studying
those optimizations, principally combined register allocation
and instruction scheduling, even independently of proof.

ACKNOWLEDGMENTS

This work was supported in part by a Google Research
Award and National Science Foundation grants CCF-1253229,
CCF-1512611, and CCF-1521584. We benefited greatly from a
fruitful collaboration with Google involving David Benjamin,
Thai Duong, Adam Langley, Dominic Rizzo, and Marius
Schilder. Robert Sloan contributed to this project as a student
at MIT, before joining Google. We thank Jason Donenfeld for
teaching us how to benchmark arithmetic code with Linux
kernel modules, as well as for setting up benchmarks for
popular Curve25519 implementations. For comments on drafts
of the paper, we thank Tej Chajed, Istvan Chung, Karl Samuel

Gruetter, Ivan Kuraj, Adam Langley, Derek Leung, Devin
Neal, Rahul Sridhar, Peng Wang, Ray Wang, and Daniel
Ziegler.

REFERENCES

[1] Y.-F. Chen, C.-H. Hsu, H.-H. Lin, P. Schwabe, M.-H. Tsai, B.-Y.
Wang, B.-Y. Yang, and S.-Y. Yang, “Verifying Curve25519 software,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS’14. ACM, 2014, pp. 299–
309, document ID: 55ab8668ce87d857c02a5b2d56d7da38. [Online].
Available: http://cryptojedi.org/papers/#verify25519

[2] D. J. Bernstein and P. Schwabe, 2016. [Online]. Available: http:
//gfverif.cryptojedi.org/

[3] J. K. Zinzindohoue, E.-I. Bartzia, and K. Bhargavan, “A verified exten-
sible library of elliptic curves,” in IEEE Computer Security Foundations
Symposium (CSF), 2016.

[4] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL*: A verified modern cryptographic library,” in Proc. CCS,
2017. [Online]. Available: https://eprint.iacr.org/2017/536.pdf

[5] B. Bond, C. Hawblitzel, M. Kapritsos, R. Leino, J. Lorch, B. Parno,
A. Rane, S. Setty, and L. Thompson, “Vale: Verifying high-
performance cryptographic assembly code,” in Proc. USENIX Security,
2017. [Online]. Available: http://www.cs.cornell.edu/∼laurejt/papers/
vale-2017.pdf

[6] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte,
T. Oliveira, H. Pacheco, B. Schmidt, and P.-Y. Strub, “Jasmin: High-
assurance and high-speed cryptography,” in Proc. CCS, 2017.

[7] “Web browsers by version (global marketshare).” [Online]. Available:
https://clicky.com/marketshare/global/web-browsers/versions

[8] D. Benjamin, in personal communication about TLS connections initi-
ated by Chrome, 2017.

[9] S. Gueron, “Efficient software implementations of modular exponentia-
tion,” 2011. [Online]. Available: https://eprint.iacr.org/2011/239.pdf

[10] D. J. Bernstein, “Curve25519: new Diffie-Hellman speed records,”
in Public Key Cryptography - PKC 2006. Proceedings of the 9th
International Conference on Theory and Practice in Public-Key
Cryptography, New York, NY, USA, April 24-26. Springer-Verlag,
2006. [Online]. Available: http://cr.yp.to/papers.html#curve25519

[11] A. Chlipala, “Parametric higher-order abstract syntax for mechanized
semantics,” in ICFP’08: Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, September 2008.
[Online]. Available: http://adam.chlipala.net/papers/PhoasICFP08/

[12] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: a theorem prover for
program checking,” Journal of the ACM, vol. 52, no. 3, pp. 365–473,
2005.

[13] D. J. Bernstein and T. Lange, “eBACS: ECRYPT benchmarking of
cryptographic systems,” 2017. [Online]. Available: https://bench.cr.yp.
to/supercop/supercop-20170228.tar.xz

[14] S. Gueron and V. Krasnov, “Fast prime field elliptic curve
cryptography with 256 bit primes,” 2013. [Online]. Available:
https://eprint.iacr.org/2013/816.pdf

[15] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro,
P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hriţcu,
K. Bhargavan, C. Fournet, and N. Swamy, “Verified low-level
programming embedded in F*,” Proc. ACM Program. Lang.,
vol. 1, no. ICFP, pp. 17:1–17:29, Aug. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3110261

[16] T. Sheard and S. P. Jones, “Template meta-programming for Haskell,”
2 2016, orig. 2002. [Online]. Available: https://www.microsoft.com/
en-us/research/wp-content/uploads/2016/02/meta-haskell.pdf

[17] T. Rompf and M. Odersky, “Lightweight modular staging: A
pragmatic approach to runtime code generation and compiled
DSLs,” Proceedings of GPCE, 2010. [Online]. Available: https:
//infoscience.epfl.ch/record/150347/files/gpce63-rompf.pdf

[18] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005,
special issue on “Program Generation, Optimization, and Platform
Adaptation”. [Online]. Available: http://www.fftw.org/fftw-paper-ieee.
pdf

[19] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP
transforms,” Proceedings of the IEEE, special issue on “Program
Generation, Optimization, and Adaptation”, vol. 93, no. 2, pp.
232–275, 2005. [Online]. Available: https://users.ece.cmu.edu/∼moura/
papers/ieeeproceedings-pueschelmouraetal-feb05-ieeexplore.pdf

[20] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: A
verified implementation of ML,” in POPL ’14: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, Jan. 2014, pp. 179–191. [Online]. Available:
https://cakeml.org/popl14.pdf

[21] X. Leroy, “A formally verified compiler back-end,” J. Autom.
Reason., vol. 43, no. 4, pp. 363–446, Dec. 2009. [Online]. Available:
http://gallium.inria.fr/∼xleroy/publi/compcert-backend.pdf

[22] G. C. Necula, “Translation validation for an optimizing compiler,” in
Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, ser. PLDI ’00. New York,
NY, USA: ACM, 2000, pp. 83–94. [Online]. Available: https:
//people.eecs.berkeley.edu/∼necula/Papers/tv pldi00.pdf

[23] M. O. Myreen and G. Curello, “A verified bignum implementation
in x86-64 machine code,” in Proc. CPP, 2013. [Online]. Available:
http://www.cse.chalmers.se/∼myreen/cpp13.pdf

[24] A. Petcher and G. Morrisett, “The Foundational Cryptography
Framework,” in Proceedings of the 4th International Conference on
Principles of Security and Trust - Volume 9036. New York, NY, USA:
Springer-Verlag New York, Inc., 2015, pp. 53–72. [Online]. Available:
http://adam.petcher.net/papers/FCF.pdf

[25] G. Barthe, B. Grégoire, and S. Zanella-Béguelin, “Formal certification
of code-based cryptographic proofs,” in 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL 2009. ACM, 2009, pp. 90–101. [Online]. Available: http:
//software.imdea.org/∼szanella/Zanella.2009.POPL.pdf

[26] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel, “Verified correctness
and security of OpenSSL HMAC,” in 24th USENIX Security Symposium,
Aug. 2015, pp. 207–221. [Online]. Available: https://www.usenix.org/
system/files/conference/usenixsecurity15/sec15-paper-beringer.pdf

[27] D. J. Bernstein, B. van Gastel, W. Janssen, T. Lange, P. Schwabe,
and S. Smetsers, “TweetNaCl: A crypto library in 100 tweets,”
in Progress in Cryptology – LATINCRYPT 2014, ser. Lecture
Notes in Computer Science, D. Aranha and A. Menezes, Eds.,
vol. 8895. Springer-Verlag Berlin Heidelberg, 2015, pp. 64–
83, document ID: c74b5bbf605ba02ad8d9e49f04aca9a2. [Online].
Available: http://cryptojedi.org/papers/#tweetnacl

[28] B. Brumley, M. B. M. Barbosa, D. Page, and F. R. G. Vercauteren,
“Practical realisation and elimination of an ECC-related software bug
attack,” 2011. [Online]. Available: https://eprint.iacr.org/2011/633.pdf

http://cryptojedi.org/papers/#verify25519
http://gfverif.cryptojedi.org/
http://gfverif.cryptojedi.org/
https://eprint.iacr.org/2017/536.pdf
http://www.cs.cornell.edu/~laurejt/papers/vale-2017.pdf
http://www.cs.cornell.edu/~laurejt/papers/vale-2017.pdf
https://clicky.com/marketshare/global/web-browsers/versions
https://eprint.iacr.org/2011/239.pdf
http://cr.yp.to/papers.html#curve25519
http://adam.chlipala.net/papers/PhoasICFP08/
https://bench.cr.yp.to/supercop/supercop-20170228.tar.xz
https://bench.cr.yp.to/supercop/supercop-20170228.tar.xz
https://eprint.iacr.org/2013/816.pdf
http://doi.acm.org/10.1145/3110261
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/meta-haskell.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/meta-haskell.pdf
https://infoscience.epfl.ch/record/150347/files/gpce63-rompf.pdf
https://infoscience.epfl.ch/record/150347/files/gpce63-rompf.pdf
http://www.fftw.org/fftw-paper-ieee.pdf
http://www.fftw.org/fftw-paper-ieee.pdf
https://users.ece.cmu.edu/~moura/papers/ieeeproceedings-pueschelmouraetal-feb05-ieeexplore.pdf
https://users.ece.cmu.edu/~moura/papers/ieeeproceedings-pueschelmouraetal-feb05-ieeexplore.pdf
https://cakeml.org/popl14.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
https://people.eecs.berkeley.edu/~necula/Papers/tv_pldi00.pdf
https://people.eecs.berkeley.edu/~necula/Papers/tv_pldi00.pdf
http://www.cse.chalmers.se/~myreen/cpp13.pdf
http://adam.petcher.net/papers/FCF.pdf
http://software.imdea.org/~szanella/Zanella.2009.POPL.pdf
http://software.imdea.org/~szanella/Zanella.2009.POPL.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-beringer.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-beringer.pdf
http://cryptojedi.org/papers/#tweetnacl
https://eprint.iacr.org/2011/633.pdf

APPENDIX A
STUDY OF BUGS IN SIMILAR CRYPTO CODE

Highly optimized handwritten cryptographic arithmetic im-
plementations have an uninspiring history of serious bugs,
even when written and audited by respected experts. To get
a sense of the details, we surveyed project bug trackers and
other Internet sources, stopping after finding 26 bugs (each
hyperlinked to its bug report) in implementation of nontrivial
cryptography-specific optimizations. Fig. 11 summarizes our
findings, in terms of 5 emergent categories. The first three
categories have to do with representing large integers using
multiple machine-word-sized integers, with custom positional
number systems. Carrying is fairly analogous to the same
concept in grade-school arithmetic, and canonicalization is a
part of converting back from a custom representation into a
standard one. Elliptic curve formulas are part of high-level
algebraic optimizations, above the level of operations on single
large integers. Crypto primitives bring it all together to provide
functionality like digital signatures.

Here is a sampling of root causes behind these bugs.
• Mechanical errors: One of the two bugs uncovered in

OpenSSL issue 3607 was summarized by its author as
“Got math wrong :-(”, which we think refers to a pencil-
and-paper execution of numerical range analysis. The
discussion was concluded when the patched version was
found to be “good for ˜6B random tests” and the reviewer
saw that “there aren’t any low-hanging bugs left.” In
ed25519-amd64-64-24k, one of 16,184 repetitive
(and handwritten) lines should have been r2 += 0 +
carry instead of r1 += 0 + carry [27, p. 2].

• Confusion over intermediate specifications: OpenSSL bug
1953 was traced back to confusion between the postcon-
ditions of exact division with remainder and an operation
that produces a q and r s.t. x = qm + r but does not
guarantee that r is the smallest possible. The probability
of a random test triggering this bug was bounded to
10 · 2−29 [28].

• Mathematical misconceptions: The CryptoNote double-
spending bug arose from use of an algorithm on a
composite-order elliptic curve when it is only applicable
in a prime-order group.

APPENDIX B
FULL RESULTS OF MANY-PRIMES EXPERIMENTS

Tables I and II contain the full results of our performance
experiments on many primes. Recall the basic experimental
setup:
• Scrape all prime numbers mentioned in the archives of

the ECC mailing list curves@moderncrypto.org.
Crucially, we record not just the numeric values of the
primes but also the ways in which they are expressed in
terms of additions and subtractions of powers of 2 and
small multiples thereof.

• We run a small Python script (shorter than 300 lines) to
inspect the shapes of these prime formulas, using simple
heuristics to choose the parameters to our Coq library: not
just a prime modulus of arithmetic but also how to divide
a big integer into digits and which sequence of carry
operations to perform in modular reduction. Actually, the
script generates multiple variants, by considering 64-bit
vs. 32-bit hardware architectures and by considering the
Montgomery and Solinas arithmetic strategies. The main
operation defined in each case is a Montgomery ladder
step.

• We run our Coq pipeline on every variant, culminating
in C code pretty-printed for each one.

• 64-bit configurations are compiled and run on an x86
Linux desktop machine, while 32-bit configurations are
compiled and run on an ARM Android mobile device.
We save the running time of each variation.

• We also compile and run fixed C and C++ implementa-
tions using libgmp.

The three comparison implementations are:
• GMP C constant-time, the best comparison with the goals

of the code we generate, since running time is required
to be independent of integer inputs

• GMP C variable time, taking advantage of additional
optimizations that leak input values through timing

• GMP C++, the only one of the comparison implementa-
tions that does not include manual memory management

All three comparison programs are conventional in that they
are fixed C or C++ programs, where the prime modulus is
set as a preprocessor macro. It is up to the C compiler and
libgmp to take advantage of properties of each modulus.
The final column in each table shows how much better our
specialized generation does. We take the ratio of variable-time
C GMP (the fastest GMP code) to whichever of our generated
variants is faster.

Some columns in the tables contain dashes in place of
numbers of seconds needed for one trial. Those spots indicate
configurations where our Coq compilation currently times out
or exhausts available memory. Considering that Coq is not
designed as a platform for executing an optimizing compiler,
we are pleased that we get as many successful compilations
as we do! However, we continue working on optimizations to
our implementation, to push up the size of prime whose code
we can compile quickly. The timing bottleneck is generally in
reification, where repeated inefficient manipulation of terms
and contexts by Ltac incurs significant overhead. The memory
bottleneck generally shows up at Qed-time. Note also that
some configurations are expected to fail to build, for instance
when applying the Solinas strategy to so-called “Montgomery-
friendly” primes like 2256−88·2240−1, where implementation
experts would never choose Solinas.

Among successful compilations, time ranges between tens
of seconds and levels best run overnight.

https://getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html

Reference/Category Specification Implementation Defect
Carrying
go#13515 Modular exponentiation uintptr-sized Montgomery form, Go carry handling
NaCl ed25519 (p. 2) F25519 mul, square 64-bit pseudo-Mersenne, AMD64 carry handling
openssl#ef5c9b11 Modular exponentiation 64-bit Montgomery form, AMD64 carry handling
openssl#74acf42c Poly1305 multiple implementations carry handling
nettle#09e3ce4d secp-256r1 modular reduction carry handling
CVE-2017-3732 x2 mod m Montgomery form, AMD64 assembly carry, exploitable
openssl#1593 P384 modular reduction carry, exploitable
tweetnacl-U32 irrelevant bit-twiddly C assumed 32-bit long
Canonicalization
donna#8edc799f GF(2255 − 19) internal to wire 32-bit pseudo-Mersenne, C non-canonical
openssl#c2633b8f a + b mod p256 Montgomery form, AMD64 assembly non-canonical
tweetnacl-m15 GF(2255 − 19) freeze bit-twiddly C bounds? typo?
Misc. number system
openssl#3607 P-256 field element squaring 64-bit Montgomery form, AMD64 limb overflow
openssl#0c687d7e Poly1305 32-bit pseudo-Mersenne, x86 and ARM bad truncation
CVE-2014-3570 Bignum squaring asm limb overflow
go#fa09811d poly1305 reduction AMD64 asm, missing subtraction of 3 found quickly
openssl#a970db05 Poly1305 Lazy reduction in x86 asm lost bit 59
openssl#6825d74b Poly1305 AVX2 addition and reduction bounds?
bitcoin#eed71d85 ECDSA-secp256k1 x*B mixed addition Jacobian+Affine missing case
Elliptic Curves
ed25519.py Ed25519 accepts signatures other impls reject missing h mod l
openjdk#01781d7e EC scalarmult mixed addition Jacobian+Affine missing case
jose-adobe ECDH-ES 5 different libraries affected not on curve
invalid-curve NIST ECDH irrelevant not on curve
end-to-end#340 Curve25519 library twisted Edwards coordinates (0, 1) =∞
openssl#59dfcabf Weier. affine <-> Jacobian Montgomery form, AMD64 and C ∞ confusion
Crypto Primitives
socat#7 DH in Z*p irrelevant non-prime p
CVE-2006-4339 RSA-PKCS-1 sig. verification irrelevant padding check
CryptoNote Anti-double-spending tag additive curve25519 curve point missed order(P) 6= l

Fig. 11: Survey of bugs in algebra-based cryptography implementations

https://github.com/golang/go/issues/13515
https://tweetnacl.cr.yp.to/tweetnacl-20131229.pdf
https://github.com/openssl/openssl/commit/29851264f11ccc70c6c0140d7e3d8d93ef5c9b11
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=4b8736a22e758c371bc2f8b3534dc0c274acf42c;ds=sidebyside
https://git.lysator.liu.se/nettle/nettle/commit/c71d2c9d20eeebb985e3872e4550137209e3ce4d
https://www.openssl.org/news/secadv/20170126.txt
https://boringssl.googlesource.com/boringssl/+/d103616db14ca9587f074efaf9f09a48b8ca80cb%5E%21/
https://rt.openssl.org/Ticket/Display.html?id=1593&user=guest&pass=guest
https://eprint.iacr.org/2011/633.pdf
https://web.archive.org/web/20160305001036/http://blog.skylable.com/2014/05/tweetnacl-carrybit-bug/
https://github.com/agl/curve25519-donna/commit/2647eeba59fb628914c79ce691df794a8edc799f
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=b62b2454fadfccaf5e055a1810d72174c2633b8f;ds=sidebyside
https://mta.openssl.org/pipermail/openssl-dev/2016-August/008179.html
http://seb.dbzteam.org/blog/2014/04/28/tweetnacl_arithmetic_bug.html
https://rt.openssl.org/Ticket/Display.html?id=3607
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=dc3c5067cd90f3f2159e5d53c57b92730c687d7e;ds=sidebyside
https://github.com/openssl/openssl/commit/a7a44ba55cb4f884c6bc9ceac90072dea38e66d0
https://github.com/golang/crypto/commit/84e98f45760e87786b7f24603b8166a6fa09811d
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=bbe9769ba66ab2512678a87b0d9b266ba970db05;ds=sidebyside
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=1ea8ae5090f557fea2e5b4d5758b10566825d74b;ds=sidebyside
https://github.com/bitcoin-core/secp256k1/commit/5de4c5dffd22aa4510a5c97d0ad4a9c2eed71d85
https://ed25519.cr.yp.to/python/ed25519.py
http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/rev/d99101781d7e
https://twitter.com/asanso/status/887691580018176000
https://blogs.adobe.com/security/2017/03/critical-vulnerability-uncovered-in-json-encryption.html
http://euklid.org/pdf/ECC_Invalid_Curve.pdf
https://github.com/google/end-to-end/issues/340
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=e3057a57caf4274ea1fb074518e4714059dfcabf;ds=sidebyside
http://www.dest-unreach.org/socat/contrib/socat-secadv7.html
https://web.archive.org/web/20071010042708/http://www.imc.org/ietf-openpgp/mail-archive/msg14307.html
https://getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html

Our Code GMP Code
Prime Sol. Mont. const

time
var
time

C++ Speed
-up

2127 − 1 0.03 0.04 0.26 0.15 0.67 5.0
2129 − 25 0.03 0.07 0.38 0.27 0.8 9.0
2130 − 5 0.03 0.09 0.39 0.28 0.79 9.33
2137 − 13 0.03 0.08 0.37 0.27 0.8 9.0
2140 − 27 0.03 0.08 0.38 0.27 0.8 9.0
2141 − 9 0.03 0.08 0.39 0.27 0.83 9.0
2150 − 3 0.03 0.08 0.38 0.3 0.8 10.0
2150 − 5 0.03 0.08 0.39 0.29 0.84 9.67
2152 − 17 0.03 0.08 0.38 0.27 0.82 9.0
2158 − 15 0.03 0.08 0.37 0.27 0.76 9.0
2165 − 25 0.03 0.08 0.38 0.27 0.78 9.0
2166 − 5 0.03 0.08 0.39 0.27 0.79 9.0
2171 − 19 0.03 0.08 0.38 0.27 0.79 9.0
2174 − 17 0.03 0.08 0.38 0.28 0.78 9.33
2174 − 3 0.03 0.08 0.38 0.27 0.78 9.0
2189 − 25 0.04 0.08 0.39 0.27 0.8 6.75
2190 − 11 0.04 0.08 0.38 0.27 0.78 6.75
2191 − 19 0.04 0.09 0.36 0.26 0.78 6.5
2192 − 264 − 1 0.05 0.07 0.31 0.24 0.79 4.8
2194 − 33 0.04 0.12 0.5 0.34 0.93 8.5
2196 − 15 0.04 0.12 0.5 0.34 0.89 8.5
2198 − 17 0.04 0.12 0.51 0.34 0.87 8.5
2205 − 45 · 2198 − 1 - 0.14 0.51 0.34 0.87 2.43
2206 − 5 0.04 0.14 0.5 0.34 0.84 8.5
2212 − 29 0.05 0.12 0.49 0.35 0.87 7.0
2213 − 3 0.04 0.13 0.49 0.37 0.88 9.25
2216 − 2108 − 1 0.04 0.12 0.51 0.35 0.88 8.75
2221 − 3 0.05 0.15 0.51 0.36 0.89 7.2
2222 − 117 0.05 0.12 0.53 0.35 0.91 7.0
2224 − 296 + 1 - 0.13 0.5 0.35 0.88 2.69
2226 − 5 0.04 0.13 0.5 0.35 0.92 8.75
2230 − 27 0.05 0.13 0.54 0.35 0.91 7.0
2235 − 15 0.06 0.13 0.5 0.34 0.89 5.67
2243 − 9 0.06 0.13 0.5 0.34 0.89 5.67
2251 − 9 0.06 0.13 0.5 0.35 0.94 5.83
2254 − 127 · 2240 − 1 - 0.12 0.5 0.35 0.92 2.92
2255 − 19 0.06 0.13 0.48 0.35 0.9 5.83
2255 − 765 0.06 0.13 0.52 0.34 0.9 5.67
2256 − 189 0.06 0.14 0.38 0.34 0.87 5.67
2256 − 2224

+2192 + 296 − 1
- 0.11 0.38 0.33 0.84 3.0

2256 − 232 − 977 0.1 0.12 0.38 0.34 0.87 3.4
2256 − 4294968273 0.14 0.13 0.37 0.34 0.86 2.62
2256 − 88 · 2240 − 1 - 0.11 0.39 0.34 0.88 3.09
2266 − 3 0.06 0.18 0.66 0.45 1.13 7.5
2285 − 9 0.06 0.18 0.73 0.43 0.97 7.17
2291 − 19 0.07 0.18 0.68 0.42 1.0 6.0
2321 − 9 0.1 0.26 0.8 0.54 1.18 5.4
2322 − 2161 − 1 0.07 0.27 0.83 0.53 1.15 7.57
2336 − 17 0.1 0.27 0.8 0.53 1.11 5.3
2336 − 3 0.09 0.27 0.86 0.53 1.08 5.89
2338 − 15 0.1 0.25 0.8 0.54 1.06 5.4
2369 − 25 0.13 0.26 0.79 0.52 1.1 4.0
2379 − 19 0.12 0.26 0.79 0.55 1.07 4.58
2382 − 105 0.13 0.25 0.92 0.57 1.11 4.38
2383 − 187 0.13 0.28 0.75 0.5 1.05 3.85

Our Code GMP Code
Prime Sol. Mont. const

time
var
time

C++ Speed
-up

2383 − 31 0.13 0.26 0.75 0.51 1.05 3.92
2383 − 421 0.13 0.25 0.76 0.51 1.06 3.92
2384 − 2128

−296 + 232 − 1
- 0.25 0.64 0.47 0.98 1.88

2384 − 317 0.13 0.26 0.67 0.48 1.0 3.69
2384 − 5 · 2368 − 1 - 0.23 0.63 0.46 0.99 2.0
2384 − 79 · 2376 − 1 - 0.23 0.62 0.46 0.99 2.0
2389 − 21 0.13 - 0.97 0.6 1.22 4.62
2401 − 31 0.14 - 0.97 0.61 1.17 4.36
2413 − 21 0.16 - 0.99 0.62 1.22 3.88
2414 − 17 0.15 - 0.98 0.6 1.21 4.0
2416 − 2208 − 1 0.14 - 0.98 0.6 1.16 4.29
2444 − 17 0.17 - 0.96 0.6 1.2 3.53
2448 − 2224 − 1 0.12 - 0.79 0.52 1.06 4.33
2450 − 2225 − 1 0.13 - 1.22 0.74 1.34 5.69
2452 − 3 0.16 - 1.24 0.71 1.32 4.44
2468 − 17 0.16 - 1.23 0.71 1.29 4.44
2480 − 2240 − 1 0.13 - 1.18 0.71 1.28 5.46
2488 − 17 0.19 - 1.2 0.7 1.28 3.68
2489 − 21 0.2 - 1.17 0.69 1.27 3.45
2495 − 31 0.19 - 1.17 0.69 1.3 3.63
2510 − 290 · 2496 − 1 - - 1.2 0.7 1.28 -
2511 − 187 0.25 - 1.13 0.66 1.21 2.64
2511 − 481 0.25 - 1.12 0.66 1.24 2.64
2512 − 491 · 2496 − 1 - - 0.99 0.62 1.15 -
2512 − 569 0.24 - 0.95 0.62 1.14 2.58
2521 − 1 0.18 - 1.4 0.81 1.44 4.5

TABLE I: Full 64-bit benchmark data. Our code tried both
Solinas and Montgomery implementations for each prime, and
we test against three GMP-based implementations: one that is
constant-time (gmpsec), one that is variable time (gmpvar),
and GMP’s C++ API. Our code is constant-time, so gmpsec
is the best comparison; however, even with that constraint
removed from GMP and not us, we compare favorably to
gmpvar.

Our Code GMP Code
Prime Sol. Mont. const

time
var
time

Speed
-up

2127 − 1 0.3 1.19 2.86 3.23 9.53
2129 − 25 0.35 1.7 3.38 3.77 9.66
2130 − 5 0.44 1.87 3.56 3.79 8.09
2137 − 13 0.48 2.06 3.41 3.78 7.1
2140 − 27 0.51 1.98 3.43 3.77 6.73
2141 − 9 0.51 2.0 3.43 3.81 6.73
2150 − 3 0.42 2.0 3.56 3.79 8.48
2150 − 5 0.49 1.99 3.38 3.8 6.9
2152 − 17 0.5 1.96 3.4 3.82 6.8
2158 − 15 0.52 2.04 3.4 3.77 6.54
2165 − 25 0.59 2.46 4.02 4.45 6.81
2166 − 5 0.61 2.43 4.02 4.43 6.59
2171 − 19 0.57 2.68 4.04 4.51 7.09
2174 − 17 0.58 2.63 4.03 4.39 6.95
2174 − 3 0.61 2.62 4.02 4.4 6.59
2189 − 25 0.7 2.65 4.05 4.4 5.79
2190 − 11 0.71 2.64 4.1 4.42 5.77
2191 − 19 0.66 2.69 4.03 4.4 6.11
2192 − 264 − 1 - 2.41 3.56 4.23 1.48
2194 − 33 0.75 - 4.66 4.94 6.21
2196 − 15 0.77 - 4.64 4.94 6.03
2198 − 17 0.76 - 4.72 4.97 6.21
2205 − 45 · 2198 − 1 - - 4.66 5.03 -
2206 − 5 0.76 - 4.62 4.91 6.08
2212 − 29 0.86 - 4.68 4.91 5.44
2213 − 3 0.7 - 4.68 4.94 6.69
2216 − 2108 − 1 0.7 - 4.67 4.92 6.67
2221 − 3 0.8 - 4.68 4.92 5.85
2222 − 117 0.87 - 4.72 4.87 5.43
2224 − 296 + 1 - - 4.13 4.85 -
2226 − 5 0.87 - 5.25 5.65 6.03
2230 − 27 0.83 - 5.29 5.71 6.37
2235 − 15 0.9 - 5.31 5.69 5.9
2243 − 9 0.86 - 5.29 5.62 6.15
2251 − 9 1.12 - 5.3 5.65 4.73
2254 − 127 · 2240 − 1 - 3.97 5.26 5.7 1.32
2255 − 19 1.01 - 5.25 5.7 5.2
2255 − 765 1.43 - 5.27 5.71 3.69
2256 − 189 1.2 - 4.71 5.49 3.93
2256 − 2224 + 2192 + 296 − 1 - - 4.7 5.46 -
2256 − 232 − 977 1.65 - 4.72 5.45 2.86
2256 − 4294968273 - - 4.77 5.48 -
2256 − 88 · 2240 − 1 - - 4.78 5.46 -
2266 − 3 1.01 - 6.1 6.32 6.04
2285 − 9 1.13 - 6.13 6.34 5.42
2291 − 19 1.33 - 6.94 6.98 5.22
2321 − 9 1.72 - 7.6 7.66 4.42
2322 − 2161 − 1 1.37 - 7.66 7.74 5.59
2336 − 17 1.67 - 7.64 7.74 4.57
2336 − 3 1.59 - 7.58 7.69 4.77
2338 − 15 1.7 - 7.66 7.67 4.51
2369 − 25 2.44 - 8.41 9.03 3.45
2379 − 19 2.47 - 8.44 9.25 3.42
2382 − 105 2.66 - 8.41 9.04 3.16
2383 − 187 2.63 - 8.44 9.11 3.21

Our Code GMP Code
Prime Sol. Mont. const

time
var
time

Speed
-up

2383 − 31 2.6 - 8.47 9.13 3.26
2383 − 421 3.58 - 8.45 9.11 2.36
2384 − 2128 − 296 + 232 − 1 - - 7.62 8.8 -
2384 − 317 3.95 - 7.62 8.82 1.93
2384 − 5 · 2368 − 1 - - 7.64 8.94 -
2384 − 79 · 2376 − 1 - - 7.66 8.84 -
2389 − 21 2.89 - 9.41 9.93 3.26
2401 − 31 2.85 - 9.35 9.92 3.28
2413 − 21 3.53 - 9.48 9.93 2.69
2414 − 17 3.72 - 9.4 9.86 2.53
2416 − 2208 − 1 2.48 - 8.54 9.67 3.44
2444 − 17 3.7 - 10.31 10.89 2.79
2448 − 2224 − 1 3.18 - 9.57 10.51 3.01
2450 − 2225 − 1 - - 11.37 11.63 -
2452 − 3 3.23 - 11.33 11.63 3.51
2468 − 17 3.2 - 11.37 11.63 3.55
2480 − 2240 − 1 3.58 - 10.47 11.33 2.92
2488 − 17 7.99 - 12.23 12.92 1.53
2489 − 21 7.7 - 12.26 12.81 1.59
2495 − 31 6.07 - 12.2 13.1 2.01
2510 − 290 · 2496 − 1 - - 12.17 12.9 -
2511 − 187 9.73 - 12.21 13.07 1.25
2511 − 481 - - 12.23 12.9 -
2512 − 491 · 2496 − 1 - - 11.26 12.58 -
2512 − 569 - - 11.23 12.55 -
2521 − 1 3.9 - 13.3 13.91 3.41

TABLE II: Full 32-bit benchmark data. Many of the 32-bit
Montgomery implementations exceeded the one-hour timeout
for proofs, because 32-bit code involves approximately four
times as many operations. The C++ GMP program was not
benchmarked on 32-bit.

	Motivation
	Overview
	High-Level Arithmetic Library Designed For Specialization
	Partial Evaluation For Specific Parameters
	Word-Size Inference
	Compilation To Constant-Time Machine Code

	Arithmetic Template Library
	Multi-Limbed Arithmetic
	Partial Modular Reduction
	Example: Multiplication Modulo 2127-1
	Associational Representation
	Carrying
	Saturated Arithmetic

	Certified Bounds Inference
	Abstract Syntax Trees
	Phases of Certified Compilation
	Important Design Choices
	Extensibility with Nonobvious Algebraic Identities

	Experimental Results
	X25519 Scalar Multiplication
	P-256 Mixed Addition
	Benchmarking All the Primes

	Related Work
	Verified Elliptic-Curve Cryptography
	Other Related Work

	Discussion
	References
	Appendix A: Study of Bugs in Similar Crypto Code
	Appendix B: Full Results of Many-Primes Experiments

