Formal Verification of the WireGuard Protocol

www.wireguard.com

Jason A. Donenfeld Kevin Milner
Oxford University
jason@zx2c4.com kevin.milner®@cs.ox.ac.uk

DRAFT REVISION

Abstract

WireGuard, the secure network tunnel, uses an interesting Diffie-
Hellman authenticated key exchange protocol based on NoiselK, custom
tailored to suit its unique operational requirements. This paper enumerates
the security properties of this key exchange and then explores the formal
verification of such properties. The end result is a formally verified secure
network tunnel protocol.

1 Background

WireGuard is a secure network tunnel for transporting layer 3 packets, for some
definition of secure. This paper endeavors to determine exactly what that is, and
formally verify it as such. The WireGuard protocol is extensively detailed in [2],
which itself is based on the NoiseIK [3] handshake. The WireGuard protocol
consists of several mechanisms: an authenticated key exchange, a cookie MAC
system for mitigating denial of service attacks, an elegant timer state machine for
concealing state to system administrators, and several desirable design decisions
from an implementation security perspective. Notably, WireGuard aims to be
silent in the face of unauthenticated packets (“stealthiness”), avoid dynamic
memory allocation, only adjust state based on authenticated data in order to
maintain fixed size memory allocations, avoid parsers, not require any long
term storage, allow initiator and responder to swap roles, and have the state
machine handle all transitions automatically. These design requirements lead to
an interesting authenticated key exchange, around which the other aspects of
the protocol revolve.

Permanent ID of this document: d376£649d7f4b68f616e05e5f64d660e9b23d7af. Static link:
wireguard.com/papers/wireguard-formal-verification.pdf. Date: June 7, 2018. This is draft
revision b956944. Copyright © 2017 Jason A. Donenfeld & Kevin Milner. All Rights Reserved.

https://www.wireguard.com/
mailto:jason@zx2c4.com
mailto:kevin.milner@cs.ox.ac.uk
https://www.wireguard.com/papers/wireguard-formal-verification.pdf

2 Key Exchange Review

While the WireGuard key exchange is extensively discussed in [2], we briefly
review the overall structure and import several variables and conventions. Leaving
aside the cookie MAC system, WireGuard consists of a 1-RTT handshake—from
initiator to responder, and responder back to initiator—after which the initiator
can then begin an exchange of transport data, depicted in figure 1. This initial
exchange of transport data from the initiator provides key confirmation, and
after, either initiator or responder may send transport data. Transport data is
encrypted using an AEAD, with a pair of symmetric keys, one for sending and
one for receiving, derived from the preceding two handshake messages, which
are referred to as the “session keys”, existing within a “session”.

Initiator— Responder—r

Handshake Initiation

Handshake Response

Transport Data

Transport Data

Figure 1: 1-RTT handshake between initiator and responder

The initiator, ¢, and the responder, r, both keep several values secret. They
each have a static long-term key, S; and S.., as well as a random session ephemeral
key, E; and E,. They may optionally also share a pre-shared symmetric key, Q;
when @ is in use, WireGuard is using what we call “pre-shared key mode“, and
otherwise WireGuard is using “normal mode“, and @ is considered to be 032,
the all zero 256-bit string. The initiator and responder exchange messages and
keep track of a shared secret, C.

3 Properties

We enumerate properties first in the case S;, S, F;, and E, (and potentially Q)
are kept secret. Then we explore which properties still remain when one or more
of these secret values are compromised by an attacker. An attacker is posited to
be in an active man-in-the-middle position. As pre-shared key mode is meant
to merely augment the security properties, in the face of a quantum attacker

or possibly other circumstances, the security properties described herein first
discuss what is provided by normal mode, and then subsequently approach the
additional properties afforded by pre-shared key mode.

3.1 Key Agreement & Correctness

The initiator and responder are able to complete the handshake and arrive
at the same session keys. Without an attacker, this constitutes a property of
correctness—the protocol at least works. With an active attacker, the fact that
key agreement necessarily occurs means that the session has authenticity.

3.1.1 No Compromised Keys

When no secret values are compromised, WireGuard achieves key agreement and
correctness.

3.1.2 Compromised Ephemeral Keys

When either F;, E,., or E; and E, are compromised, WireGuard achieves key
agreement and correctness.

3.1.3 Compromised Static Keys

When S; is compromised, the initiator achieves key agreement with the responder,
because WireGuard is resistant to key-compromise impersonation (KCI), but
the responder does not achieve key agreement with the initiator. When S, is
compromised, the responder achieves key agreement with the initiator, because
WireGuard is resistant to KCI, but the initiator does not achieve key agreement
with the responder. (When S; and S, are both compromised, there is no key
agreement.)

3.1.4 Compromised Static Key & Ephemeral Key

The KCI resistance of the prior section also holds when either S; and E,. or S,
and E; are compromised.

When all four keys, S;, Sy, F;, and E,., are compromised, WireGuard remains
resistant to an unknown key-share (UKS) attack. That is, if the initiator and
responder derive C, then they must necessarily agree on all four keys, even if
they are compromised.

3.1.5 Pre-shared Key Mode

When using pre-shared key mode, if @) is not compromised, WireGuard achieves
key agreement and correctness, even when S;, S,., E;, and E, are all compromised.
When @ is compromised, the properties of the preceding four sections hold.

3.2 Key Secrecy

When there is key agreement, there is also key secrecy, when the resultant session
keys are only known the initiator and responder, and not to the attacker.
3.2.1 No Compromised Keys

When no secret values are compromised, WireGuard achieves key secrecy.

3.2.2 Compromised Ephemeral Keys

When either F;, E,, or E; and E, are compromised, WireGuard achieves key
secrecy.

3.2.3 Compromised Static Keys

When S;, S,, or S; and S, are compromised, WireGuard achieves key secrecy.

3.2.4 Compromised Static Key & Ephemeral Key

When either S; and E,. or S, and E; are compromised, WireGuard achieves key
secrecy.

3.2.5 Forward Secrecy

Forward secrecy changes the attacker’s position to that of a passive man-in-the-
middle, recording all traffic, who at some later time compromises either S;, S,
or S; and S,. As stated above, if the attacker does not also compromise either
E; or E,., WireGuard achieves forward secrecy.

3.2.6 Pre-shared Key Mode

When using pre-shared key mode, if @) is not compromised, WireGuard achieves
key secrecy, even when S;, S,, E;, and E, are all compromised. When @ is
compromised, the properties of the preceding five sections hold.

3.3 Session Uniqueness

Different sessions will always have different, unique, session keys, due to the use
of the ephemeral values, F; and E,.

3.3.1 Total Freshness

When both E; and E, are fresh, WireGuard achieves session uniqueness.

3.3.2 Partial Freshness

When either E; or FE, is fresh, WireGuard achieves session uniqueness.

3.4 Identity Hiding

S, is never transmitted in any form; it is secret from an attacker. S; is transmitted,
but encrypted; it is secret from an attacker.

3.4.1 No Compromised Keys

When no secret values are compromised, WireGuard achieves identity hiding.

3.4.2 Compromised Ephemeral Keys

When FE, is compromised, WireGuard achieves identity hiding. When F; is
compromised, WireGuard does not achieve identity hiding.

3.4.3 Compromised Static Keys

When S; is compromised, S; is no longer secret, by definition. When S, is
compromised, WireGuard does not achieve identity hiding; this is a reasonable
trade-off permitted by the protocol.

4 Formal Model & Proofs

4.1 Tamarin

Tamarin [5] is a formal verification tool supporting unbounded verification of
security protocols modulo an equational theory. Protocols are specified as
a collection of labeled multiset-rewriting rules, which execute subject to an
adversary and equational theory. We give a brief overview of how Tamarin works
here; for a detailed discussion see [4]. For an introduction to using Tamarin, we
suggest the manual at [6].

Facts and Rules

A model in Tamarin defines a transition system, with rules specifying how the
world’s state can change over time. State is represented by a multiset of facts,
each of which has an associated name and arity. For example, we write Fa(z,y)
for a fact named “Fa” with two associated terms = and y. Facts are the atoms
from which we build our protocol model, used to represent agent state, limited
resources, and other execution constraints.

Rules specify how world state can change over time, representing both
adversary capabilities and the behavior of participating agents (similar to oracles
in Bellare-Rogaway style models). Executing a rule at some time point may
require some facts to exist prior to that time point, and may create some other
facts at that time point; these facts are called the premises and conclusions of
the rule respectively.

Facts can either be marked as persistent or linear; persistent facts may be
used repeatedly to satisfy the premises of rules, while linear facts are removed

from the world state at the timepoint they are used to execute a rule. This allows
us to efficiently model read-only memory or causal constraints using persistent
facts, and also allows us to represent linear constraints like non-monotonic agent
state, limited resources, and control flow.

Rules are labeled with actions, such that the execution of a rule at some time
point associates some action with that time point. Actions do not influence rule
execution directly, but instead incrementally construct a trace which represents
a sort of record of rule execution. When we prove that a protocol model has
some property, we reference these actions and are proving a property of the set
of all traces which can be generated by the protocol model.

Finally, there are a few special facts in Tamarin, to model the generation of
fresh terms (e.g. from a PRNG) and to interact with the network. The Fr(x)
fact can be used in the premises of a rule to model generating a fresh term .
In(...) and Out(...) can be used in the premises and conclusions respectively
to model receiving from or sending to the adversary-controlled network.

Adversary and Equational Theories

Tamarin models cryptography symbolically, and assumes a Dolev-Yao adver-
sary [1]. That is, the adversary intercepts every message and can block or modify
them as much as desired, restricted only by a message deduction theory.

Tamarin models interaction with the network through special facts as men-
tioned above. Terms sent to the network using an Out(. ..) fact in the conclusion
of a rule can be used by the adversary to construct new messages, which can then
be received by using the In(...) fact in the premises of a rule. The adversary can
also construct or deconstruct terms according to public functions. For example,
if encrypt(_,) is a public function, then an adversary with knowledge of two
terms = and y the can construct encrypt(z,y).

Equality constraints in Tamarin are equality modulo an equational theory,
rather than being strictly based on syntactic matching. For example, our
equational theory may include

decrypt(encrypt(m, k), k) = m,

even though the terms m and decrypt(encrypt(m, k), k) are not syntactically
identical. Tamarin includes built in definitions for a number of different crypto-
graphic primitives, and additional formulae and equations can be defined easily.
Notably, Tamarin includes support for a Diffie-Hellman equational theory, allow-
ing symbolic reasoning about key exchange protocols and adversary capability
in that setting.

4.2 WireGuard Model

The model of WireGuard makes use of the Diffie-Hellman equational theory
defined in [5] with five additional formula: h/1, for hashing, aead/3, decrypt/2,
verify /3 for authenticated encryption with additional data (AEAD) operations,

and true/0, for an affirmative result of AEAD decryption verification. Here, /k
denotes k-arity. These formulae have the equations

decrypt(aead(k,p,a), k) — p
verify(aead(k, p, a), a, k) — true,

representing the ability to recover the encrypted plaintext p of aead(k, p, a) using
the key k, and also verify its authenticity using both the key & and the additional
authenticated data (AAD) a.

Note that these equations do not provide the adversary a way to scramble
the plaintext in the AEAD such that it could be decrypted incorrectly when
the AAD is not known, as could happen in a real-world flawed implementation.
For the purposes of modeling WireGuard, this is sufficient, since the AAD is
always known. Interestingly, decrypt is never needed by the agents as they can
reconstruct the aead term directly; it exists so that the adversary can learn the
plaintext of messages after revealing a key.

There are three actions, each of which concern all the relevant state variables,
RKeys(S;, Sy, E;, By, Q,C), IKeys(S;, Sy, Ey, B, Q,C), and RConfirm(S;, Sy, E;,
E,.,Q,C), associated with the three states in the protocol, which are, respectively:
the responder after receiving the first message from the initiator and replying,
the initiator after receiving the second message from the responder and deriving
transport keys, and the responder after receiving the first transport message
from the initiator, thereby confirming the transport keys.

We consider an adversary able to compromise three types of secrets at
any time, corresponding to the following actions in the trace: Reveal(S;) and
Reveal(S,.) correspond to a compromise of either peer’s static key, Reveal(E;)
and Reveal(E,) correspond to a compromise of either peer’s ephemeral key, and
Reveal(®) corresponds to a compromise of the pre-shared key. Reveal(Q) may
also correspond to the pre-shared key mode not being used at all, in which case
the WireGuard protocol uses an all zero key, which is equivalent to the adversary
simply knowing it in advance. Additionally, for secrecy properties we reference a
built-in action K(C'). This action is yielded by a rule equivalent to In(C) in the
premises, and is referenced to add a constraint that the adversary must be able
to construct the term C' to violate secrecy (and thus that C' is secret if no such
trace exists).

Wireguard assumes that agents share their public keys and optionally a pre-
shared symmetic key before the key exchange occurs, so rather than receiving
public keys over the adversary-controlled network, agents add the public key of
their peers directly by taking in Agent(SP“*) and Agent(Q) facts directly in the
premises. These facts are persistent, as multiple agents might have the same
peer, and are created by rules which just generate fresh values. This is equivalent
to peers receiving public and pre-shared keys out-of-band before the protocol
begins.

The model breaks agent state into two parts, an invariant portion and a
mutable portion. The mutable portion is stored in a linear fact State(id,),
containing a fresh identifier (to uniquely bind it to the relevant invariant

fact) and a generic term representing the current state machine state of the
agent (e.g. that a handshake is in progress with a particular ephemeral key
and hash chain). The invariants are contained instead in a persistent fact
Statelnvariants(id, @, SY™", SPvb DH(SP"™", SPub)), containing the same identi-
fier, the relevant pre-shared symmetric key, initiator private key, and responder
public key, as well as the precomputed static-static Diffie-Hellman (included to
reduce the amount of computation done by Tamarin). Splitting up the state
in this way allows Tamarin to immediately link the terms in the invariant to
the point where the agents were set up—whereas solving a single linear fact
containing all state terms would only give the state transitions that could have
occurred immediately prior.

4.3 Verified Properties of the Model

The Tamarin model includes the ability of the adversary to compromise keys at
any time, so we typically prove the contrapositive of the properties enumerated
in Section 3. For example, where a property might state, “when S; and FE,. are
compromised, the initiator achieves agreement with the responder,” we instead
prove that if the initiator does not achieve agreement with the responder then
there must have been compromise of some other set of keys. Tamarin’s “spthy”
description language is here converted into standard first order logic, with one
exception: the modifier @ ¢; binds the preceding expression to a particular time
t1. Times specifiers like £; may be temporally compared to other times, such
as in the statement t; < t5. With this background established, the following
properties are verified by the model:

4.3.1 Agreement

The key agreement properties stated in Section 3.1 are covered by the following
three lemmas. First, from the initiator’s perspective, we prove that disagreement
implies that either S, was compromised beforehand, or both S; and FE; were
compromised beforehand.

Lemma 1 (Unmatched initiator session requires S, or (S;, E;) compromise, as
well as @ compromise).

VSi, Sr, Ei, B, Q, Ct1 . IKeys(S;, Sy, B, B, Q,C) Q tg A
- (ﬂtg <tp. RKeys(S’i, S, E;, E,, Q, C) @ tz)
= ((3t2 < t1 . Reveal(S,) @ty) vV
(Ft2 < t1,t3 < t1 . Reveal(S;) @ t2 A Reveal(E;) Q t3)) A
(Jt2 < t1 . Reveal(Q) Q@ t)
Similarly, from the responder’s perspective, disagreement after the first

transport message implies either S; or both S, and E, were compromised before
that message.

Lemma 2 (Unmatched responder session requires S; or (S, E,) compromise,
as well as @@ compromise).

VS;, S, Ei, Er, Q, C,ty . RConfirm(S;, Sy, Ei, B, Q,C) @t A
= (Jty < t1 . IKeys(S;, S, Ey, B, Q,C) Q o)
= ((Jt2 < t1 . Reveal(S;) Q1) V
(Fte < t1,t3 < t1 . Reveal(S,) @ t5 A Reveal(E,.) @ t3)) A
(3t2 < t1 . Reveal(Q) Q@ ts)

Finally, we show that if there is a session key, it necessarily came from the
same set of identity keys, thereby preventing an unknown key-share attack:

Lemma 3 (Session derivation implies key agreement).

VSZ',SI{,Sr,S;,Ei,EZ{,Er,E;,Q,Q/,C, tlatQ .
IKeyS(Siv ST‘7 E’ia ET7 Qv C) (CRIWA RKeyS(S;a S:“:EzlyE;a le C) Qty
— SZ‘ZSZ{/\ST:S;‘/\EZ':Ez{/\ET:E;‘/\Q:Q/

4.3.2 Secrecy

For the secrecy properties in Section 3.2, we prove a secrecy property conditioned
on key agreement. Specifically, if I and R agree on their keys (even if R has
not yet confirmed them), then either the adversary never learns the key C' they
derived, or the adversary compromised both the static and ephemeral of one of
the agents.

Lemma 4 (Key secrecy unless (S;, E;) or (S, E,), as well as @, are compro-
mised).

VSi, Sr, Ei, Er, Q,Clty, to .
IKeys(S;, Sy, Fi, Er, Q,C) @ t; A RKeys(S;, Sy, E;, Er, Q,C) Q ty
= - (33 .K(C)Qt3)V
((3ts . Reveal(Q) @ t3) A
((3ts,tq . Reveal(S,) Q t3 A Reveal(E,) Q ty) V
(Jts, t4 . Reveal(S;) @Q t3 A Reveal(E;) @ ty)))

4.3.3 Uniqueness

Whereas uniqueness in Section 3.3 is stated in terms of whether terms are fresh,
in the Tamarin model any agent reaching an “agreement” action must have
generated at least their own ephemeral fresh; recall that we do not model a
broken randomness source that produces adversary-controlled values, just one
which can be revealed by the adversary. Thus, we prove that an agent who
negotiated a particular key can only do so once, even using different ephemeral
and pre-shared keys, with no restriction on adversary compromise rules.

Lemma 5 (Initiator session uniqueness).

vsi75T7Ei7ETaQ7Cut1 . lKeys(Si7ST7Ei7ET7QJC) Q@ tl
= - (EEéaEfler/atQ . |KeyS(Si,ST,EZ/-,E7/A,QI,C) Q@ t2)

Lemma 6 (Responder session uniqueness).

VSi,ST,Ei,ET,Q,C,tl . RConfirm(Si,ST7Ei,ET,Q,C) Q tl
— —(3E},E., Q' t5 . RConfirm(S;, S,, B, E.,Q',C) @ t,)

4.3.4 Identity Hiding

Identity hiding is difficult to model directly because it requires describing what
an adversary can learn from a particular message. We cannot prove anything
about whether the adversary learned the public key of the initiator, because the
adversary does know the public key of every agent. Instead, we model identity
hiding through the use of a fresh “surrogate” term, o, which is added to the first
message in the same place as the initiators public key; we then prove that the
adversary did not learn o from the first message.

It is important to note that this proves a more limited property than the
identity hiding discussed in Section 3.4. For example, the public static key of
S;, unlike o is not fresh each message. It may therefore still be possible for the
adversary to link multiple initiator messages back to the same identity while still
fulfilling the property below. Furthermore, the usage of the “macl” parameter
provides an opportunity for an attacker to confirm the destination public key of
a message from an honest sender.

Lemma 7 (Initiator identity (surrogate) hiding).

Vo, Si, Sr, Ei, Er, Q,C 1 .
RKeys(S;, S, B, B, Q,C) Qt; Ao Q t;
= (3t . Reveal(S,) @ t3) V (It2 . Reveal(S;) @ tg) V
(3t2 . Reveal(E;) Q t5)

References

[1] Danny Dolev and Andrew Yao. “On the security of public key protocols”. In:
IEEE Transactions on information theory 29.2 (1983), pp. 198-208 (cit. on
p. 6).

[2] Jason A. Donenfeld. “WireGuard: Next Generation Kernel Network Tunnel”.
In: Proceedings of the 2017 Network and Distributed System Security Sym-
posium. NDSS’17. Document ID: 4846ada1492f5492198df154f48c3d54205
657bc. San Diego, CA, Feb. 2017. 1SBN: 1-891562-46-0. DOI: 10.14722/ndss.
2017.23160. URL: https://www.wireguard.com/papers/wireguard.pdf
(cit. on pp. 1, 2).

10

https://doi.org/10.14722/ndss.2017.23160
https://doi.org/10.14722/ndss.2017.23160
https://www.wireguard.com/papers/wireguard.pdf

Trevor Perrin. The Noise Protocol Framework. 2016. URL: http://noiseprotocol.
org/noise.pdf (cit. on p. 1).

Benedikt Schmidt. “Formal analysis of key exchange protocols and physical
protocols”. Doctoral Thesis. ETH Ziirich, 2012. po1: 10.3929/ethz- a-
009898924 (cit. on p. 5).

Benedikt Schmidt et al. “Automated Analysis of Diffie-Hellman Protocols
and Advanced Security Properties”. In: CSF. June 2012, pp. 78-94. DOI:
10.1109/CSF.2012.25 (cit. on pp. 5, 6).

Tamarin Prover Manual. URL: https://tamarin-prover.github.io/manual/
(cit. on p. 5).

11

http://noiseprotocol.org/noise.pdf
http://noiseprotocol.org/noise.pdf
https://doi.org/10.3929/ethz-a-009898924
https://doi.org/10.3929/ethz-a-009898924
https://doi.org/10.1109/CSF.2012.25
https://tamarin-prover.github.io/manual/

	Background
	Key Exchange Review
	Properties
	Key Agreement & Correctness
	No Compromised Keys
	Compromised Ephemeral Keys
	Compromised Static Keys
	Compromised Static Key & Ephemeral Key
	Pre-shared Key Mode

	Key Secrecy
	No Compromised Keys
	Compromised Ephemeral Keys
	Compromised Static Keys
	Compromised Static Key & Ephemeral Key
	Forward Secrecy
	Pre-shared Key Mode

	Session Uniqueness
	Total Freshness
	Partial Freshness

	Identity Hiding
	No Compromised Keys
	Compromised Ephemeral Keys
	Compromised Static Keys

	Formal Model & Proofs
	Tamarin
	WireGuard Model
	Verified Properties of the Model
	Agreement
	Secrecy
	Uniqueness
	Identity Hiding

