
Presented by Jason A. Donenfeld

Who Am I?

▪ Jason Donenfeld, also known as ZX2C4, founder of Edge
Security (.com), a security consultancy.

▪ Background in exploitation, kernel vulnerabilities, crypto
vulnerabilities, though quite a bit of development experience
too.

▪ Motivated to make a VPN that avoids the problems in both
crypto and implementation that I’ve found in numerous other
projects.

What is WireGuard?

▪ Layer 3 secure network tunnel for IPv4 and
IPv6.

▪ Opinionated.

▪ Lives in the Linux kernel, but cross platform
implementations are in the works.

▪ UDP-based. Punches through firewalls.

▪ Modern conservative cryptographic principles.

▪ Emphasis on simplicity and auditability.

▪ Authentication model similar to SSH’s
authenticated_keys.

▪ Replacement for OpenVPN and IPsec.

Security Design Principle 1: Easily
Auditable

OpenVPN Linux XFRM StrongSwan SoftEther WireGuard

101,199 LoC
Plus OpenSSL!

13,898 LoC
Plus StrongSwan!

405,894 LoC
Plus XFRM!

329,853 LoC 3,924 LoC

Less is more.

Security Design Principle 1: Easily
Auditable

IPsec
(XFRM+StrongSwan)

419,792 LoC

SoftEther
329,853 LoC

OpenVPN
101,199

LoC

WireGuard
3,924 LoC

Security Design Principle 2: Simplicity
of Interface

▪ WireGuard presents a normal network interface:

ip link add wg0 type wireguard
ip address add 192.168.3.2/24 dev wg0
ip route add default via wg0
ifconfig wg0 …
iptables –A INPUT -i wg0 …

/etc/hosts.{allow,deny}, bind(), …

▪ Everything that ordinarily builds on top of network interfaces –
like eth0 or wlan0 – can build on top of wg0.

Blasphemy!

▪ WireGuard is blasphemous!

▪ We break several layering assumptions of 90s networking
technologies like IPsec.

▪ IPsec involves a “transform table” for outgoing packets, which is
managed by a user space daemon, which does key exchange and
updates the transform table.

▪ With WireGuard, we start from a very basic building block – the
network interface – and build up from there.

▪ Lacks the academically pristine layering, but through clever
organization we arrive at something more coherent.

Cryptokey Routing

▪ The fundamental concept of any VPN is an association between
public keys of peers and the IP addresses that those peers are
allowed to use.

▪ A WireGuard interface has:

▪ A private key

▪ A listening UDP port

▪ A list of peers

▪ A peer:

▪ Is identified by its public key

▪ Has a list of associated tunnel IPs

▪ Optionally has an endpoint IP and port

Cryptokey Routing

Server Config

[Interface]
PrivateKey =
yAnz5TF+lXXJte14tji3zlMNq+hd2rYU
IgJBgB3fBmk=
ListenPort = 41414

[Peer]
PublicKey =
xTIBA5rboUvnH4htodjb6e697QjLERt1
NAB4mZqp8Dg=
AllowedIPs =
10.192.122.3/32,10.192.124.1/24

[Peer]
PublicKey =
TrMvSoP4jYQlY6RIzBgbssQqY3vxI2Pi
+y71lOWWXX0=
AllowedIPs =
10.192.122.4/32,192.168.0.0/16

Client Config

[Interface]
PrivateKey =
gI6EdUSYvn8ugXOt8QQD6Yc+JyiZxIhp
3GInSWRfWGE=
ListenPort = 21841

[Peer]
PublicKey =
HIgo9xNzJMWLKASShiTqIybxZ0U3wGLi
UeJ1PKf8ykw=
Endpoint = 192.95.5.69:41414
AllowedIPs = 0.0.0.0/0

Cryptokey Routing

User space send()s
packet.

Ordinary Linux
routing table
decides to give it to
wg0.

WireGuard inspects
the destination IP
address of the
packet to determine
which peer it’s for.

The packet is
encrypted with that
peer’s session keys,
and sent to the
peer’s endpoint.

WireGuard UDP socket
recv()s encrypted
packet.

It decrypts this
packet, and in doing
so learns which peer
it’s from.

WireGuard inspects
the source IP of the
decrypted packet, and
sees if this actually
corresponds with the
peer who sent it.

If it corresponds, the
packet is allowed;
otherwise it’s
dropped.

Cryptokey Routing

▪ wg set wg0
listen-port 2345
private-key /path/to/private-key
peer ABCDEF…

allowed-ips 192.168.88.3/32
endpoint 209.202.254.14:8172

peer XYZWYAB…
remove

peer 123456…
allowed-ips 192.168.88.4/32
endpoint 212.121.200.100:2456

▪ wg setconf < config.file

▪ wg getconf > config.file

▪ wg show

▪ wg genkey > private.key

▪ wg pubkey < private.key > public.key

Cryptokey Routing

▪ Makes system administration
very simple.

▪ If it comes from interface wg0
and is from Yoshi’s tunnel IP
address of 192.168.5.17,
then the packet definitely came
from Yoshi.

▪ The iptables rules are plain
and clear.

Security Design Principle 2: Simplicity
of Interface

▪ The interface appears stateless to the system administrator.

▪ Add an interface – wg0, wg1, wg2, … – configure its peers, and
immediately packets can be sent.

▪ Endpoints roam, like in mosh.

▪ Identities are just the static public keys, just like SSH.

▪ Everything else, like session state, connections, and so forth, is
invisible to admin.

Security Design Principle 3: Static
Allocations, Guarded State, and Fixed
Length Headers

▪ All state required for WireGuard to work is allocated during
config.

▪ No memory is dynamically allocated in response to received
packets.

▪ Eliminates entire classes of vulnerabilities.

▪ All packet headers have fixed width fields, so no parsing is
necessary.

▪ Eliminates another entire class of vulnerabilities.

▪ No state is modified in response to unauthenticated packets.

▪ Eliminates yet another entire class of vulnerabilities.

Security Design Principle 4: Stealth

▪ Some aspects of WireGuard
grew out of an earlier kernel
rootkit project.

▪ Should not respond to any
unauthenticated packets.

▪ Hinder scanners and service
discovery.

▪ Service only responds to
packets with correct crypto.

▪ Not chatty at all.

▪ When there’s no data to be
exchanged, both peers
become silent.

Security Design Principle 5: Solid
Crypto

▪ We make use of Trevor Perrin’s Noise Protocol Framework – noiseprotocol.org

▪ Developed with much feedback from the WireGuard development.

▪ Custom written very specific implementation of NoiseIK for the kernel.

▪ Perfect forward secrecy – new key every 2 minutes

▪ Avoids key compromise impersonation

▪ Identity hiding

▪ Authenticated encryption

▪ Replay-attack prevention, while allowing for network packet reordering

▪ Modern primitives: Curve25519, Blake2s, ChaCha20, Poly1305, SipHash2-4

▪ Lack of cipher agility!

Principles 3 + 4 + 5  The Key
Exchange

Initiator Responder

Handshake Initiation Message

Handshake Response Message

Transport Data

Transport Data

Both Sides Calculate Symmetric Session Keys

Principles 3 + 4 + 5  The Key
Exchange

▪ In order for two peers to exchange data, they must first derive ephemeral
symmetric crypto session keys from their static public keys.

▪ The key exchange is particularly well designed to keep our principles of
solid crypto, static allocations, guarded state, fixed length headers, and
stealthiness.

▪ One peer is an initiator of the exchange, and the other peer is the
responder.

▪ Initiator and responder can swap roles at any time.

▪ 1-RTT

▪ Either side can reinitiate the handshake to derive new session keys.

▪ Invalid handshake messages are ignored, keeping our stealth principle.

The Key Exchange: Diffie-Hellman
Review

private A = random()
public A = derive_public(private A)

private B = random()
public B = derive_public(private B)

DH(private A, public B) == DH(private B, public A)

The Key Exchange: NoiseIK

▪ One peer is the initiator; the other is the responder.

▪ Each peer has their static identity – their long term static keypair.

▪ For each new handshake, each peer generates an ephemeral keypair.

▪ The security properties we want are achieved by computing DH() on the
combinations of two ephemeral keypairs and two static keypairs.

▪ Session keys = Noise(
DH(ephemeral, static),
DH(static, ephemeral),
DH(ephemeral, ephemeral),
DH(static, static)

)

▪ The first three DH() make up the “triple DH”, and the last one allows for
authentication in the first message, for 1-RTT.

The Key Exchange: NoiseIK – Initiator
 Responder

▪ The initiator begins by knowing the long term static public key of the responder.

▪ The initiator sends to the responder:

▪ A cleartext ephemeral public key.

▪ The initiator’s public key, authenticated-encrypted using a key that is an (indirect) result of:

DH(initiator’s ephemeral private, responder’s static public) ==
DH(responder’s static private, initiator’s ephemeral public)

▪ After decrypting this, the responder knows the initiator’s public key.

▪ Only the responder can decrypt this, because it requires control of the responder’s static private key.

▪ A monotonically increasing counter (usually just a timestamp in TAI64N) that is authenticated-encrypted
using a key that is an (indirect) result of the above calculation as well as:

DH(initiator’s static private, responder’s static public) ==
DH(responder’s static private, initiator’s static public)

▪ This counter prevents against replay DoS.

▪ Authenticating it verifies the initiator controls its private key.

▪ Authentication in the first message – static-static DH().

The Key Exchange: NoiseIK –
Responder  Initiator

▪ The responder at this point has learned the initiator’s static public key from the prior first
message, as well as the initiator’s ephemeral public key.

▪ The responder sends to the initiator:

▪ A cleartext ephemeral public key.

▪ An empty buffer, authenticated-encrypted using a key that is an (indirect) result of the
calculations in the prior message as well as:

DH(responder’s ephemeral private, initiator’s ephemeral public) ==
DH(initiator’s ephemeral private, responder’s ephemeral public)

and

DH(responder’s ephemeral private, initiator’s static public) ==
DH(initiator’s static private, responder’s ephemeral public)

▪ Authenticating it verifies the responder controls its private key.

The Key Exchange: Session Derivation

▪ After the previous two messages (initiator  responder and responder  initiator),
both initiator and responder have something bound to these DH() calculations:

▪ DH(initiator’s ephemeral private, responder’s static public) ==
DH(responder’s static private, initiator’s ephemeral public)

▪ DH(initiator’s static private, responder’s static public) ==
DH(responder’s static private, initiator’s static public)

▪ DH(initiator’s ephemeral private, responder’s ephemeral public) ==
DH(responder’s ephemeral private, initiator’s ephemeral public)

▪ DH(initiator’s static private, responder’s ephemeral public) ==
DH(responder’s ephemeral private, initiator’s static public)

▪ From this they can derive symmetric authenticated-encryption session keys – one for
sending and one for receiving.

▪ When the initiator sends its first data message using these session keys, the responder
receives confirmation that the initiator has understood its response message, and can
then send data to the initiator.

The Key Exchange

▪ The crypto might seem a bit
complicated, but it uses a very
limited set of primitives:

▪ Elliptical curve Diffie-Hellman,
hashing, authenticated-
encryption.

▪ And still just 1-RTT.

▪ Extremely simple to implement in
practice, and doesn’t lead to the
type of complicated messes we
see in OpenSSL and StrongSwan.

▪ No certificates, X.509, or ASN.1:
both sides exchange very short
(32 bytes) base64-encoded
public keys, just as with SSH.

Timers: A Stateless Interface for a
Stateful Protocol

▪ As mentioned prior, WireGuard appears “stateless” to user
space; you set up your peers, and then it just works.

▪ A series of timers manages session state internally, invisible to
the user.

▪ Every transition of the state machine has been accounted for, so
there are no undefined states or transitions.

▪ Event based.

Timers

• If no session has been established for 120 seconds, send
handshake initiation.User space sends packet.

• Resend handshake initiation.No handshake response after 5
seconds.

• Send an encrypted empty packet after 10 seconds, if we
don’t have anything else to send during that time.

Successful authentication of
incoming packet.

• Send handshake initiation.No successfully authenticated
incoming packets after 15 seconds.

Security Principle 6: Denial of Service
Resistance

▪ Hashing and symmetric crypto is fast, but pubkey crypto is
slow.

▪ We use Curve25519 for elliptic curve Diffie-Hellman (ECDH),
which is one of the fastest curves, but still is slower than the
network.

▪ Overwhelm a machine asking it to compute DH().

▪ Vulnerability in OpenVPN!

▪ UDP makes this difficult.

▪ WireGuard uses “cookies” to solve this.

Cookies: TCP-like

▪ Dialog:

▪ Initiator: Compute this DH().

▪ Responder: Your magic word is
“karaage”. Ask me again with the magic
word.

▪ Initiator: My magic word is “karaage”.
Compute this DH().

▪ Proves IP ownership, but cannot rate
limit IP address without storing state.

▪ Violates security design principle, no
dynamic allocations!

▪ Always responds to message.

▪ Violates security design principle, stealth!

▪ Magic word can be intercepted.

Cookies: DTLS-like and IKEv2-like

▪ Dialog:

▪ Initiator: Compute this DH().

▪ Responder: Your magic word is “cbdd7c…bb71d9c0”. Ask me again with the magic word.

▪ Initiator: My magic word is “cbdd7c…bb71d9c0”. Compute this DH().

▪ “cbdd7c…bb71d9c0” == MAC(key=responder_secret, initator_ip_address)

Where responder_secret changes every few minutes.

▪ Proves IP ownership without storing state.

▪ Always responds to message.

▪ Violates security design principle, stealth!

▪ Magic word can be intercepted.

▪ Initiator can be DoS’d by flooding it with fake magic words.

Cookies: HIPv2-like and Bitcoin-like

▪ Dialog:

▪ Initiator: Compute this DH().

▪ Responder: Mine a Bitcoin first, then ask me!

▪ Initiator: I toiled away and found a Bitcoin. Compute this DH().

▪ Proof of work.

▪ Robust for combating DoS if the puzzle is harder than DH().

▪ However, it means that a responder can DoS an initiator, and
that initiator and responder cannot symmetrically change roles
without incurring CPU overhead.

▪ Imagine a server having to do proofs of work for each of its clients.

Cookies: The WireGuard Variant

▪ Each handshake message (initiation and response) has two macs:
mac1 and mac2.

▪ mac1 is calculated as:
HASH(responder_public_key || handshake_message)

▪ If this mac is invalid or missing, the message will be ignored.

▪ Ensures that initiator must know the identity key of the responder in order
to elicit a response.

▪ Ensures stealthiness – security design principle.

▪ If the responder is not under load (not under DoS attack), it proceeds
normally.

▪ If the responder is under load (experiencing a DoS attack), …

Cookies: The WireGuard Variant

▪ If the responder is under load (experiencing a DoS attack), it replies with a
cookie computed as:
AEAD(
key=HASH(responder_public_key || salt),
additional_data=handshake_message,
MAC(key=responder_secret, initiator_ip_address)

)

▪ mac2 is then calculated as:
MAC(key=cookie, handshake_message)

▪ If it’s valid, the message is processed even under load.

Cookies: The WireGuard Variant

▪ Once IP address is attributed, ordinary token bucket rate
limiting can be applied.

▪ Maintains stealthiness.

▪ Cookies cannot be intercepted by somebody who couldn’t
already initiate the same exchange.

▪ Initiator cannot be DoS’d, since the encrypted cookie uses the
original handshake message as the “additional data”
parameter.

▪ An attacker would have to already have a MITM position, which
would make DoS achievable by other means, anyway.

Performance

▪ Being in kernel space means that it is fast and low latency.

▪ No need to copy packets twice between user space and kernel space.

▪ ChaCha20Poly1305 is extremely fast on nearly all hardware, and
safe.

▪ AES-NI is fast too, obviously, but as Intel and ARM vector instructions
become wider and wider, ChaCha is handedly able to compete with AES-
NI, and even perform better in some cases.

▪ AES is exceedingly difficult to implement performantly and safely (no
cache-timing attacks) without specialized hardware.

▪ ChaCha20 can be implemented efficiently on nearly all general purpose
processors.

▪ Simple design of WireGuard means less overhead, and thus better
performance.

▪ Less code  Faster program? Not always, but in this case, certainly.

Performance: Measurements

0 128 256 384 512 640 768 896 1024

WireGuard

IPSec (AES)

IPSec (ChaPoly)

OpenVPN (AES)

1011

881

825

257

Megabits per Second

Bandwidth

0 0.25 0.5 0.75 1 1.25 1.5

WireGuard

IPSec (AES)

IPSec (ChaPoly)

OpenVPN (AES)

0.403

0.501

0.508

1.541

Milliseconds

Ping Time

Recap: WireGuard is Simple, Fast, and
Secure

▪ Less than 4,000 lines of code.

▪ Easily auditable by everyone in the
room.

▪ Easily implemented with basic data
structures.

▪ Design of WireGuard lends itself to
coding patterns that are secure in
practice.

▪ Minimal state kept, no dynamic
allocations.

▪ Stealthy and minimal attack surface.

▪ Solid cryptographic foundation.

▪ Fundamental property of a secure
tunnel: association between a peer
and a peer’s IPs.

▪ Extremely performant – best in class.

▪ Simple standard interface via an
ordinary network device.

▪ Opinionated.

Demo

More Information

WireGuard

▪ Main website:
www.wireguard.io

▪ Source code:
$ git clone https://git.zx2c4.com/WireGuard

▪ Mailing list:
lists.zx2c4.com/mailman/listinfo/wireguard
wireguard@lists.zx2c4.com

Jason Donenfeld

▪ Personal website:
www.zx2c4.com

▪ Company website:
www.edgesecurity.com

▪ Email:
Jason@zx2c4.com

http://www.wireguard.io/
https://git.zx2c4.com/WireGuard
https://lists.zx2c4.com/mailman/listinfo/wireguard
mailto:wireguard@lists.zx2c4.com
http://www.zx2c4.com/
http://www.edgesecurity.com/
mailto:Jason@zx2c4.com

