
Presented by Jason A. Donenfeld

July 19, 2017

Security Interest Group

Who Am I?

ǐJason Donenfeld, also known as zx2c4 .

ǐBackground in exploitation, kernel vulnerabilities, crypto
vulnerabilities, though quite a bit of development experience
too.

ǐMotivated to make a VPN that avoids the problems in both
;JQHLG 9F< AEHD=E=FL9LAGF L@9L 'ӐN= >GMF< AF FME=JGMK GL@=J
projects.

What is WireGuard?

ǐLayer 3 secure network tunnel for IPv4 and
IPv6.

ǐOpinionated.

ǐLives in the Linux kernel, but cross platform
implementations are in the works.

ǐUDP-based. Punches through firewalls.

ǐModern conservative cryptographic principles.

ǐEmphasis on simplicity and auditability.

ǐ ML@=FLA;9LAGF EG<=D KAEAD9J LG 11&ӐK
authenticated_keys .

ǐReplacement for OpenVPNand IPsec.

Easily Auditable

OpenVPN Linux XFRM StrongSwan SoftEther WireGuard

116,730LoC
Plus OpenSSL!

13,898LoC
PlusStrongSwan!

405,894LoC
Plus XFRM!

329,853LoC 3,794LoC

Less is more.

Easily Auditable

IPsec
(XFRM+StrongSwan)

419,792LoC

SoftEther
329,853LoC

OpenVPN
116,730

LoC

WireGuard
3,794 LoC

Simplicity of Interface

ǐWireGuardpresents a normal network interface:

ip link add wg0 type wireguard
ip address add 192.168.3.2/24 dev wg0
ip route add default via wg0
ifconfig O?λ Ϥ
iptables ϹA INPUT - i O?λ Ϥ

/ etc /hosts.{ allow,deny Еϡ :AF<АБϡ Ϥ

ǐEverything that ordinarily builds on top of network interfaces ӛ
like eth0 or wlan0 ӛcan build on top of wg0.

Blasphemy!

ǐWireGuardis blasphemous!

ǐWe break several layering assumptions of 90s networking
technologies like IPsec.

ǐ'.K=; AFNGDN=K 9 ӑLJ9FK>GJE L9:D=Ӓ >GJ GML?GAF? H9;C=LKӅ O@A;@ AK
managed by a user space daemon, which does key exchange and
updates the transform table.

ǐWith WireGuard, we start from a very basic building block ӛthe
network interface ӛand build up from there.

ǐLacks the academically pristine layering, but through clever
organization we arrive at something more coherent.

Simplicity of Interface

ǐThe interface appearsstateless to the system administrator.

ǐAdd an interface ӛwg0, wg1, wg2Ӆ ӈӛconfigure its peers, and
immediately packets can be sent.

ǐEndpoints roam, like in mosh.

ǐIdentities are just the static public keys, just like SSH.

ǐEverything else, like session state, connections, and so forth, is
invisible to admin.

Cryptokey Routing

ǐThe fundamental concept of any VPN is an association between
public keys of peers and the IP addresses that those peers are
allowed to use.

ǐA WireGuardinterface has:

ǐA private key

ǐA listening UDP port

ǐA list of peers

ǐA peer:

ǐIs identified by its public key

ǐHas a list of associated tunnel IPs

ǐOptionally has an endpoint IP and port

Cryptokey Routing

PUBLIC KEY :: IP ADDRESS

Cryptokey Routing

ǐMakes system administration
very simple.

ǐIf it comes from interface wg0
9F< AK >JGE 7GK@AӐK LMFF=D '.
address of 192.168.5.17 ,
then the packet definitely came
from Yoshi.

ǐThe iptablesrules are plain
and clear.

Demo

Simple ComposableTools

ǐSince wg(8) is a very simple tool, that works with ip (8) ,
other more complicated tools can be built on top.

ǐIntegration into various network managers:

ǐifupdown

ǐOpenWRT/LEDE

ǐOpenRCnetifrc

ǐNixOS

ǐsystemd-networkd (WIP)

ǐNetworkManager(WIP)

Simple ComposableTools: wg- quick

ǐSimple shell script

ǐ# wg- quick up vpn0
wg- quick down vpn0

ǐ/etc/wireguard/vpn0.conf:

[Interface]
Address = 10.200.100.2
PostUp = echo nameserver 10.200.100.1 | resolvconf - a %i - m 0 Ϲx
PostDown = resolvconf - d %i
PrivateKey = uDmW0qECQZWPv4K83yg26b3L4r93HvLRcal997IGlEE=

[Peer]
PublicKey = +LRS63OXvyCoVDs1zmWRO/6gVkfQ/pTKEZvZ+CehO1E=
AllowedIPs = 0.0.0.0/0
Endpoint = demo.wireguard.io:51820

Network Namespace Tricks

ǐThe WireGuardinterface can live in one namespace, and the
physical interface can live in another.

ǐOnly let a Docker container connect via WireGuard.

ǐOnly let your DHCP client touch physical interfaces, and only let
your web browser see WireGuardinterfaces.

ǐNice alternative to routing table hacks.

Namespaces: Containers

ip addr
1: lo: <LOOPBACK,UP,LOWER_UP>

inet 127.0.0.1/8 scope host lo
17: wg0: <NOARP,UP,LOWER_UP>

inet 192.168.4.33/32 scope global wg0

Namespaces: Personal VPN

ip addr
1: lo: <LOOPBACK,UP,LOWER_UP>

inet 127.0.0.1/8 scope host lo
17: wg0: <NOARP,UP,LOWER_UP>

inet 192.168.4.33/32 scope global wg0

Timers: A Stateless Interface for a
Stateful Protocol

ǐAs mentioned prior, WireGuard9HH=9JK ӑKL9L=D=KKӒ LG MK=J
space; you set up your peers, and then it just works.

ǐA series of timers manages session state internally, invisible to
the user.

ǐEvery transition of the state machine has been accounted for, so
there are no undefined states or transitions.

ǐEvent based.

Timers

ӢIf no session has been established for 120 seconds, send
handshake initiation.User space sends packet.

ӢResend handshake initiation.No handshake response after 5
seconds.

ӢSend an encrypted empty packet after 10 seconds, if we
<GFӐL @9N= 9FQL@AF? =DK= LG K=F< <MJAF? L@9L LAE=ӄ

Successful authentication of
incoming packet.

ӢSend handshake initiation.No successfully authenticated
incoming packets after 15 seconds.

Static Allocations, Guarded State, and
Fixed Length Headers

ǐAll state required for WireGuardto work is allocated during
config.

ǐNo memory is dynamically allocated in response to received
packets.

ǐEliminates entire classes of vulnerabilities.

ǐAll packet headers have fixed width fields, so no parsing is
necessary.

ǐEliminates anotherentire class of vulnerabilities.

ǐNo state is modified in response to unauthenticated packets.

ǐEliminates yet anotherentire class of vulnerabilities.

Stealth

ǐSome aspects of WireGuard
grew out of an earlier kernel
rootkit project.

ǐShould not respond to any
unauthenticated packets.

ǐHinder scanners and service
discovery.

ǐService only responds to
packets with correct crypto.

ǐNot chatty at all.

ǐ5@=F L@=J=ӐK FG <9L9 LG :=
exchanged, both peers
become silent.

Crypto

ǐ5= E9C= MK= G> 2J=NGJ .=JJAFӐK ,GAK= .JGLG;GD $J9E=OGJCӛ
noiseprotocol.org

ǐDeveloped with much feedback from the WireGuarddevelopment.

ǐCustom written very specific implementation of NoiseIKfor the
kernel.

ǐ2@= MKM9D DAKL G> EG<=JF <=KAJ9:D= HJGH=JLA=K QGMӐ< O9FL >JGE
an authenticated key exchange

ǐModern primitives: Curve25519, Blake2s, ChaCha20, Poly1305,
SipHash2-4

ǐLack of cipher agility!

Crypto

ǐKey secrecy

ǐPerfect forward secrecy ӛnew key every 2 minutes

ǐKey agreement

ǐAuthenticity

ǐKCI-resistance

ǐIdentity hiding

ǐReplay-attack prevention, while allowing for network packet
reordering

ǐWorking on formal verification via Tamarin with Kevin Milner

The Key Exchange

Initiator Responder

Handshake Initiation Message

Handshake Response Message

Transport Data

Transport Data

Both Sides Calculate Symmetric Session Keys

The Key Exchange

ǐIn order for two peers to exchange data, they must first derive
ephemeral symmetric crypto session keys from their static
public keys.

ǐThe key exchange designed to keep our principles static
allocations, guarded state, fixed length headers, and
stealthiness.

ǐEither side can reinitiate the handshake to derive new session
keys.

ǐ1G AFALA9LGJ 9F< J=KHGF<=J ;9F ӑKO9HӒ JGD=Kӄ

ǐInvalid handshake messages are ignored, maintaining stealth.

The Key Exchange: NoiseIK

ǐOne peer is the initiator; the other is the responder.

ǐEach peer has their static identity ӛtheir long term static keypair.

ǐFor each new handshake, each peer generates an ephemeral keypair.

ǐThe security properties we want are achieved by computing ECDH() on
the combinations of two ephemeral keypairs and two static keypairs.

ǐSession keys = Noise(
ECDH(ephemeral, static),
ECDH(static, ephemeral),
ECDH(ephemeral, ephemeral),
ECDH(static, static)

)

ǐThe first three ECDH() E9C= MH L@= ӑLJAHD= "&ӒӅ 9F< L@= D9KL GF= 9DDGOK >GJ
authentication in the first message, for 1-RTT.

Key Agreement and Correctness

ǐKey agreement is achieved even in multiple compromise
situations:

ǐBoth ephemeral keys compromised

ǐInitiator static compromised Ą Initiator still has key agreement with
responder

ǐ(KCI resistance)

ǐResponder static compromised ĄResponder still has key
agreement with initiator

ǐ(KCI resistance)

ǐCombinations of a static key and an ephemeral key compromised

Key Secrecy

ǐDependent on key agreement.

ǐKey secrecy is achieved even in these compromise situations:

ǐBoth ephemeral keys compromised

ǐBoth static keys compromised

ǐImplies forward secrecy

ǐOne static key and one ephemeral key

Session Uniqueness

ǐDifferent sessions should always have different unique keys

ǐWhen both ephemerals are fresh, this is achieved

ǐAlso, when only one ephemeral is fresh, it is achieved

Identity Hiding

ǐInitiator achieves identity hiding when no keys are
compromised.

ǐ'FALA9LGJ 9DKG 9;@A=N=K A<=FLALQ @A<AF? O@=F L@= J=KHGF<=JӐK
ephemeral key is compromised.

ǐInitiator does not9;@A=N= A<=FLALQ @A<AF? O@=F L@= J=KHGF<=JӐK
static key is compromised.

ǐLack of forward secrecy for identity hiding

ǐA necessity of a 1-RTT handshake

Formal Symbolic Verification

ǐFormally verified using Tamarin.

The Key Exchange: NoiseIKӛInitiator
ĄResponder

ǐThe initiator begins by knowing the long term static public key of the responder.

ǐThe initiator sends to the responder:

ǐA cleartextephemeral public key.

ǐ2@= AFALA9LGJӐK HM:DA; C=QӅ 9ML@=FLA;9L=<-encrypted using a key that is an (indirect) result of:

ECDH(Ei , Sr) == ECDH(Sr, Ei)

ǐ >L=J <=;JQHLAF? L@AKӅ L@= J=KHGF<=J CFGOK L@= AFALA9LGJӐK HM:DA; C=Qӄ

ǐ-FDQ L@= J=KHGF<=J ;9F <=;JQHL L@AKӅ :=;9MK= AL J=IMAJ=K ;GFLJGD G> L@= J=KHGF<=JӐK KL9LA; HJAN9L= C=Qӄ

ǐA monotonically increasing counter (usually just a timestamp in TAI64N) that is
authenticated-encrypted using a key that is an (indirect) result of the above calculation as
well as:

ECDH(Si, Sr) == ECDH(Sr, Si)

ǐThis counter prevents against replay DoS.

ǐAuthenticating it verifies the initiator controls its private key.

ǐAuthentication in the first message ӛstatic-static ECDH() .

The Key Exchange: NoiseIKӛ
Responder Ą Initiator

ǐ2@= J=KHGF<=J 9L L@AK HGAFL @9K D=9JF=< L@= AFALA9LGJӐK KL9LA; HM:DA; C=Q >JGE
L@= HJAGJ >AJKL E=KK9?=Ӆ 9K O=DD 9K L@= AFALA9LGJӐK =H@=E=J9D HM:DA; C=Qӄ

ǐThe responder sends to the initiator:

ǐA cleartextephemeral public key.

ǐAn empty buffer, authenticated-encrypted using a key that is an (indirect) result of
the calculations in the prior message as well as:

ECDH(Er , Ei) == ECDH(Ei , Er)

and

ECDH(Er , Si) == ECDH(Si, Er)

ǐAuthenticating it verifies the responder controls its private key.

The Key Exchange: Session Derivation

ǐAfter the previous two messages (initiator Ą responder and responder Ą
initiator), both initiator and responder have something bound to these ECDH()
calculations:

ǐECDH(Ei , Sr) == ECDH(Sr, Ei)

ǐECDH(Si, Sr) == ECDH(Sr, Si)

ǐECDH(Ei , Er) == ECDH(Er , Ei)

ǐECDH(Si, Er) == ECDH(Er , Si)

ǐFrom this they can derive symmetric authenticated-encryption session keys ӛ
one for sending and one for receiving.

ǐWhen the initiator sends its first data message using these session keys, the
responder receives confirmationthat the initiator has understood its response
message, and can then send data to the initiator.

The Key Exchange

ǐJust 1-RTT.

ǐExtremely simple to
implement in practice, and
<G=KFӐL D=9< LG L@= LQH= G>
complicated messes we see
in OpenSSL and StrongSwan.

ǐNo certificates, X.509, or
ASN.1: both sides exchange
very short (32 bytes) base64-
encoded public keys, just as
with SSH.

Poor-E9FӐK ./ 0=KAKL9F;=

ǐOptionally, two peers can have a pre-shared key, which gets
ӑEAP=<Ӓ AFLG L@= @9F<K@9C=ӄ

ǐ%JGN=JӐK 9D?GJAL@Eӛ256-bit symmetric key, brute forced with
2128 iterations.

ǐThis speed-up is optimal.

ǐPre-shared keys are easy to steal, especially when shared
amongst lots of parties.

ǐBut simply augments the ordinary handshake, not replaces it.

ǐBy the time adversary can decrypt past traffic, hopefully all
those PSKs have been forgotten by various hard drives anyway.

Denial of Service Resistance

ǐHashing and symmetric crypto is fast, but pubkeycrypto is
slow.

ǐWe use Curve25519 for elliptic curve Diffie-Hellman (ECDH),
which is one of the fastest curves, but still is slower than the
network.

ǐOverwhelm a machine asking it to compute ECDH() .

ǐVulnerability in OpenVPN!

ǐUDP makes this difficult.

ǐWireGuardMK=K ӑ;GGCA=KӒ LG KGDN= L@AKӄ

Cookies: TCP-like

ǐDialog:

ǐInitiator: Compute this ECDH() .

ǐResponder: Your magic word is ӑD9LC=Ӓӄ
Ask me again with the magic word.

ǐInitiator: My magic word is ӑD9LC=Ӓӄ
Compute this ECDH() .

ǐProves IP ownership, but cannot rate
limit IP address without storing state.

ǐViolates security design principle, no
dynamic allocations!

ǐAlways responds to message.

ǐViolates security design principle, stealth!

ǐMagic word can be intercepted.

Cookies: DTLS-like and IKEv2-like
ǐDialog:

ǐInitiator: Compute this ECDH() .

ǐ0=KHGF<=Jӆ 7GMJ E9?A; OGJ< AK ӑ;:<<ς;Ϥ::ςμ<τ;λӒӄ KC E= 9?9AF OAL@ L@= E9?A;
word.

ǐInitiator: My magic word is ӑ;:<<ς;Ϥ::ςμ<τ;λӒӄCompute this ECDH() .

ǐϭ;:<<ς;Ϥ::ςμ<τ;λϮ ӔӔ + !АC=QӔresponder_secret , initator_ip_address)

Where responder_secret changes every few minutes.

ǐProves IP ownership without storing state.

ǐAlways responds to message.

ǐViolates security design principle, stealth!

ǐMagic word can be intercepted.

ǐInitiator can be "G1Ӑ<by flooding it with fake magic words.

Cookies: HIPv2-like and Bitcoin -like

ǐDialog:

ǐInitiator: Compute this ECDH() .

ǐResponder: Mine a Bitcoin first, then ask me!

ǐInitiator: I toiled away and found a Bitcoin. Compute this ECDH() .

ǐProof of work.

ǐRobust for combating DoSif the puzzle is harder than ECDH() .

ǐHowever, it means that a responder can DoSan initiator, and
that initiator and responder cannot symmetrically change roles
without incurring CPU overhead.

ǐImagine a server having to do proofs of work for each of its clients.

Cookies: The WireGuard Variant
ǐEach handshake message (initiation and response) has two macs: mac1

and mac2.

ǐmac1 is calculated as:
HASH(responder_public_key || handshake_message)

ǐIf this mac is invalid or missing, the message will be ignored.

ǐEnsures that initiator must know the identity key of the responder in order to
elicit a response.

ǐEnsures stealthinessӛsecurity design principle.

ǐIf the responder is not under load (not under DoSattack), it proceeds
normally.

ǐIf the responder is under load (experiencing a DoS9LL9;CӧӅ ӈ

Cookies: The WireGuard Variant

ǐIf the responder is under load (experiencing a DoSattack), it replies with a
cookie computed as:
XAEAD(

key=HASH(responder_public_key),
additional_data =handshake_message ,
MAC(key=responder_secret , initiator_ip_address)

)

ǐmac2 is then calculated as:
MAC(key=cookie, handshake_message)

ǐ'> ALӐK N9DA<Ӆ L@= E=KK9?= AK HJG;=KK=< =N=F MF<=J DG9<ӄ

Cookies: The WireGuard Variant

ǐOnce IP address is attributed, ordinary token bucket rate
limiting can be applied.

ǐMaintains stealthiness.

ǐ!GGCA=K ;9FFGL := AFL=J;=HL=< :Q KGE=:G<Q O@G ;GMD<FӐL
already initiate the same exchange.

ǐInitiator cannot be "G1Ӑ<, since the encrypted cookie uses the
GJA?AF9D @9F<K@9C= E=KK9?= 9K L@= ӑ9<<ALAGF9D <9L9Ӓ
parameter.

ǐAn attacker would have to already have a MITM position, which
would make DoSachievable by other means, anyway.

Performance

ǐBeing in kernel space means that it is fastand low latency.

ǐNo need to copy packets twice between user space and kernel space.

ǐChaCha20Poly1305 is extremely fast on nearly all hardware, and
safe.

ǐAES-NI is fast too, obviously, but as Intel and ARM vector instructions
become wider and wider, ChaChais handedly able to compete with AES-
NI, and even perform better in some cases.

ǐAES is exceedingly difficult to implement performantly and safely (no
cache-timing attacks) without specialized hardware.

ǐChaCha20 can be implemented efficiently on nearly all general purpose
processors.

ǐSimple design of WireGuardmeans less overhead, and thus better
performance.

ǐLess code ĄFaster program? Not always, but in this case, certainly.

Performance: Measurements

0 128 256 384 512 640 768 8961024

WireGuard

IPSec (AES)

IPSec (ChaPoly)

OpenVPN (AES)

1011

881

825

257

Megabits per Second

Bandwidth

0 0.25 0.5 0.75 1 1.25 1.5

WireGuard

IPSec (AES)

IPSec (ChaPoly)

OpenVPN (AES)

0.403

0.501

0.508

1.541

Milliseconds

Ping Time

