
Presented by Jason A. Donenfeld

September 26, 2018



Who Am I?

▪ Jason Donenfeld, also known as zx2c4.

▪ Background in exploitation, kernel vulnerabilities, crypto 
vulnerabilities, and been doing kernel-related development for a 
long time.

▪ Have been working on WireGuard – an in-kernel VPN protocol –
for the last few years.



WireGuard

▪ Less than 4,000 lines of code.

▪ Easily implemented with basic 
data structures.

▪ Design of WireGuard lends itself 
to coding patterns that are 
secure in practice.

▪ Minimal state kept, no dynamic 
allocations.

▪ Stealthy and minimal attack 
surface.



Crypto API Doubts

▪Are the WireGuard objectives of simplicity 
of the codebase and extreme auditability 
possible with the existing crypto API?



Case study: security/keys/big_key.c

▪ Stores key in memory, encrypted data on disk. Gives plain-
text back to user if user has access to key. (See keyctl(1).)

▪ Originally the crypto was totally broken.

▪ Used ECB mode:

▪ Missing authentication tag – keys could be modified on
disk.

▪ Bad source of randomness.

▪ Key reuse.

▪ Improper key zeroing.

▪ CVEs!



Case study: security/keys/big_key.c

▪ Seeing that it was broken, I rewrote it, making proper use of the crypto API.



Case study: security/keys/big_key.c



Case study: security/keys/big_key.c



Case study: security/keys/big_key.c

▪ Problem: big_key likes to kmalloc around a megabyte worth 
of material.

▪ Some systems cannot kmalloc that much.

▪ Solution: kvalloc? Nope, not with the crypto API.



Case study: security/keys/big_key.c



Case study: security/keys/big_key.c



Case study: security/keys/big_key.c

▪ All of this trouble to just encrypt a buffer with the most common 
authenticated encryption scheme.

▪ Have to allocate once per encryption.

▪ Have to allocate once per key.

▪ Cannot use stack addresses or vmalloc’d addresses.

▪ Bizarre string parsing to even select our crypto algorithm.

▪ Super crazy “enterprise” API that is very prone to failure.

▪ Overwhelmingly hard to use.



Case study: security/keys/big_key.c

▪Zinc’s fix for this:



Case study: security/keys/big_key.c

▪ Essentially amounts to cleaning out the old cruft, plus:



Zinc is Functions!

▪ Not a super crazy and abstracted API.

▪ Zinc gives simple functions.

▪ High-speed and high assurance software-based 
implementations.

▪ Innovation: C has functions!



Zinc is Functions!

▪ ChaCha20 stream cipher.

▪ Poly1305 one-time authenticator.

▪ ChaCha20Poly1305 AEAD construction.

▪ BLAKE2s hash function and PRF.

▪ Curve25519 elliptic curve Diffie-Hellman function .

▪ We’re starting with what WireGuard uses, and expanding out 
from there.



Real World Example: Hashing

▪ One shot:

▪ Multiple updates:



Zinc is Functions!

▪ This is not very interesting nor is it innovative.

▪ These are well-established APIs.

▪ It is new to finally be able to do this in the kernel.

▪ No domain-specific string parsing descriptor language:

▪ “authenc(hmac(sha256),rfc3686(ctr(aes)))”

▪ Very straightforward.



Zinc is Functions!

▪ Dynamic dispatch can be implemented on top of Zinc.

▪ Existing crypto API can be refactored to use Zinc as its underlying 
implementation.

▪ Tons of crypto code has already leaked into lib/, such as various hash
functions and chacha20. Developers want functions! Zinc provides them 
in a non haphazard way.



Implementations

▪ Current crypto API is a museum of different primitives and 
implementations.

▪ Who wrote these?

▪ Are they any good?

▪ Have they been verified?



Implementations

▪ Zinc’s approach is, in order of preference:

▪ Formally verified, when available.

▪ In widespread use and have received lots of scrutiny.

▪ Andy Polyakov’s implementations, which are also the fastest 
available for nearly every platform.

▪ Stemming from the reference implementation.



Implementations

▪ ChaCha20: C, SSSE3, AVX2, AVX512F, AVX512VL, ARM32, 
NEON32, ARM64, NEON64, MIPS32

▪ Poly1305: C, x86_64, AVX, AVX2, AVX512F, ARM32, NEON32, 
ARM64, NEON64, MIPS32, MIPS64

▪ BLAKE2s: C, AVX, AVX512VL

▪ Curve25519: C, NEON32, x86_64-BMI2, x86_64-ADX

▪ Super high speed.



Formal Verification

▪ HACL* and fiat-crypto

▪ Machine-generated C that’s actually readable.

▪ Define a model in F* of the algorithm, prove that it’s correct, 
and then lower down to C (or in some cases, verified 
assembly).

▪ Much less likely to have crypto vulnerabilities.

▪ HACL* team is based out of INRIA and is working with us on 
Zinc.



Stronger Relations with Academia

▪ People who design crypto primitives and the best and 
brightest implementing them generally don’t come near the 
kernel:

▪ It’s weird, esoteric, hard to approach.

▪ Goal is to make this an attractive project for the best minds, 
to accept contributions from outside our kernel bubble.

▪ Several academics have already expressed interest in 
dedicating resources, or have already begun to contribute.



Fuzzing
▪ All implementations have been heavily fuzzed and continue 

to be heavily fuzzed.



Assurance

▪ By choosing implementations that are well-known and 
broadly used, we benefit from implementation analysis from 
across the field.

▪ Andy Polyakov’s CRYPTOGAMS implementations are used in 
OpenSSL, for example.



Straightforward Organization

▪ Implementations go into lib/zinc/{name}/

▪ lib/zinc/chacha20/chacha20.c
lib/zinc/chacha20/chacha20-arm.S
lib/zinc/chacha20/chacha20-x86_64.S

▪ By grouping these this by primitive, we invite contribution in an 
approachable and manageable way.

▪ It also allows us to manage glue code and implementation
selection via compiler inlining, which makes things super fast.

▪ No immense retpoline slowdowns due to function pointer soup.



Compiler Inlining



Branch Prediction is Faster than Function Pointers



SIMD Context Optimizations

▪ Traditional crypto in the kernel follows usage like:



SIMD Context Optimizations

▪ What happens when encrypt is called in a loop?

▪ We have to save and restore the FPU registers every time.

▪ Super slow!



SIMD Context Optimizations
▪ Solution: simd batching:

▪ Familiar get/put paradigm.

▪ Since simd disables preemption, simd_relax ensures that 
sometimes we do toggle simd on and off.



SIMD Context Optimizations
▪ Then, the crypto implementations check simd_use, to activate

simd (only the first time):

▪ Avoids activating simd if it’s not going to be used in the end.



▪ Change in direction from present crypto API.

▪ Faster.

▪ Lightweight.

▪ Easier to use.

▪ Fewer security vulnerabilities.

▪ Maintained by Jason Donenfeld (WireGuard) 
and Samuel Neves (BLAKE2, NORX, MEM-AEAD).

▪ Currently posted alongside WireGuard in v6 
form.

▪ We’re shooting for Linux 5.0.

Jason Donenfeld

▪ Personal website:
www.zx2c4.com

▪ WireGuard:
www.wireguard.com

▪ Company:
www.edgesecurity.com

▪ Email:
Jason@zx2c4.com

Zinc: Lightweight and Minimal

http://www.zx2c4.com/
http://www.wireguard.com/
http://www.edgesecurity.com/
mailto:Jason@zx2c4.com

