ZINE
Minimal Lightwelght Crypto AP

Presented by Jason A. Donenfeld

September 26, 2018

Who Am|?

= Jason Donenfeld, also known as zx2cA4.

» Background in exploitation, kernel vulnerabilities, crypto
vulnerabilities, and been doing kernel-related development for a
long time.

* Have been working on WireGuard - an in-kernel VPN protocol -
for the last few years.

i

WireGuard

= Less than 4,000 lines of code.

= Easily implemented with basic
data structures.

= Design of WireGuard lends itself
to coding patterns that are
secure in practice.

= Minimal state kept, no dynamic
allocations.

= Stealthy and minimal attack
surface.

i

Crypto APl Doubts

" Are the WireGuard objectives of simplicity
of the codebase and extreme auditability
possible with the existing crypto API?

i

Case study: security/keys/big_key.c
= Stores key in memory, encrypted data on disk. Gives plain-
text back to user if user has access to key. (See keyctl(1).)
= Originally the crypto was totally broken.

= Used ECB mode:

= Missing authentication tag - keys could be modified on
disk.

= Bad source of randomness.
= Key reuse.
= Improper key zeroing.

= CVEs!

7IME

Case study: security/keys/big_key.c

= Seeing that it was broken, | rewrote it, making proper use of the crypto API.

static struct crypto_aead *big_key_aead;
static DEFINE_MUTEX(big_key_aead_lock)3

// Confusingly passing "CRYPTO_ALG_ASYNC" means "don't be async"!
big_key_aead = crypto_alloc_aead('"gcm(aes)", ©, CRYPTO_ALG_ASYNC);
if (IS_ERR(big_key_aead))

ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);

if (ret < 0)

Case study: security/keys/big_key.c

int ret;

struct scatterlist sgio;

struct aead_request *aead_req}

u8 zero_nonce[crypto_aead_ivsize(big_key_aead)];

aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL)j // Have to allocate memory!
if (laead_req)

memset(zero_nonce, 0, sizeof(zero_nonce))}

// Using scattergather means data must not be on the stack!

sg_init_one(&sgio, data, datalen + (op == BIG_KEY_ENC ? ENC_AUTHTAG_SIZE : 0));
aead_request_set_crypt(aead_req, &sgio, &sgio, datalen, zero_nonce)}
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL)3
aead_request_set_ad(aead_req, 0)3

i

Case study: security/keys/big_key.c

mutex_lock(&big_key_aead_lock)

// The key 1is a part of the global object, so we have to take a
// mutex before setting it. In other words: we have to allocate
// lots of memory for each different key 1in use, or take locks.
if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE))

ret = crypto_aead_encrypt(aead_req);
mutex_unlock(&big_key_aead_lock)
aead_request_free(aead_req);

return ret;

Case study: security/keys/big_key.c

* Problem: big_key likes to kmalloc around a megabyte worth
of material.

= Some systems cannot kmalloc that much.

= Solution: kvalloc? Nope, not with the crypto API.

i

Case study: security/keys/big_key.c

Author: David Howells <dhowells@redhat.com>
Date: Thu Feb 22 14:38:34 2018 +0000

KEYS: Use individual pages in big_key for crypto buffers

kmalloc() can't always allocate large enough buffers for big_key to use for
crypto (1MB + some metadata) so we cannot use that to allocate the buffer.
Further, vmalloc'd pages can't be passed to sg_init_one() and the aead
crypto accessors cannot be called progressively and must be passed all the
data in one go (which means we can't pass the data in one block at a time).

Fix this by allocating the buffer pages individually and passing them
through a multientry scatterlist to the crypto layer. This has the bonus
advantage that we don't have to allocate a contiguous series of pages.

We then vmap() the page list and pass that through to the VFS read/write
routines.

i

Case study: security/keys/big_key.c

static void *big_key_alloc_buffer(size_t len)
{
struct big_key_buf *buf;
unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT,
unsigned int i, 1;

buf = kzalloc(sizeof(struct big_key_buf) +

sizeof(struct page) * npg +

sizeof(struct scatterlist) * npg, if (!buf->pages[i])

GFP_KERNEL) ; goto nomem;
if (!'buf) , _

return NULL: 1 = min_t(size_t, len{ PAGE_SIZE);
sg_set_page(&buf->sg[i], buf->pages[i], 1, 0);

len -= 1;

buf->nr_pages = npg; }

buf->sg = (void *)(buf->pages + npg);

sg_init_table(buf->sg, npg); buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
if (!'buf->virt)
for (1 = 0; i < buf->nr_pages; i++) { goto nomem;
buf->pages[i] = alloc_page(GFP_KERNEL);
return buf;

big_key_free_buffer(buf);
return NULL;

Case study: security/keys/big_key.c

= All of this trouble to just encrypt a buffer with the most common
authenticated encryption scheme.

Have to allocate once per encryption.

Have to allocate once per key.

Cannot use stack addresses or vmalloc’d addresses.

Bizarre string parsing to even select our crypto algorithm.

Super crazy “enterprise” API that is very prone to failure.

Overwhelmingly hard to use.

i

Case study: security/keys/big_key.c

=Zinc’s fix for this:

security/keys/Kconfig | -

security/keys/big_key.c | 230
2 files changed, 28 insertions(+), 206 deletions(-)

i

Case study: security/keys/big_key.c

= Essentially amounts to cleaning out the old cruft, plus:

buf = kvmalloc(enclen, GFP_KERNEL);
if (!'buf)
return -ENOMEM;

/* generate random key */
enckey = kmalloc(CHACHA20POLY1305_KEY_SIZE, GFP_KERNEL);
if ('!'enckey) {

ret = -ENOMEM;

goto error;
}
ret = get_random_bytes_wait(enckey, CHACHA20POLY1305_KEY_SIZE);
if (unlikely(ret))

goto err_enckey;

/* encrypt data */
chacha20poly1305_encrypt(buf, prep->data, datalen, NULL, O,

0, enckey);

I[N

Zinc is Functions!

Not a super crazy and abstracted API.

Zinc gives simple functions.

High-speed and high assurance software-based
implementations. SOYLENT
Innovation: C has functions! IS PE

i

Zinc is Functions!

» ChaCha20 stream cipher.

* Poly1305 one-time authenticator.

» ChaCha20Poly1305 AEAD construction.

» BLAKE2s hash function and PRF.

» Curve25519 elliptic curve Diffie-Hellman function .

= We’re starting with what WireGuard uses, and expanding out
from there.

i

Real World Example: Hashing

= One shot:

blake2s(macl, -message, *key, - COOKIE_LEN, - len, -NOISE_SYMMETRIC_KEY_LEN) ;

* Multiple updates:
struct-blake2s_state-blake;

blake2s_init(&blake, *NOISE_SYMMETRIC_KEY_LEN)

blake2s_update(&blake, - label, - COOKIE_KEY_LABEL_LEN)
blake2s_update(&blake, pubkey, -NOISE_PUBLIC_KEY_LEN) ;
blake2s_final(&blake, -key, *NOISE_SYMMETRIC_KEY_LEN) ;

i

Zinc is Functions!

= Thisis not very interesting nor is it innovative.
» These are well-established APIs.
= |tis new to finally be able to do this in the kernel.

= No domain-specific string parsing descriptor language:
= “authenc(hmac(sha256),rfc3686(ctr(aes)))”

= Very straightforward.

i

Zinc is Functions!

= Dynamic dispatch can be implemented on top of Zinc.

= Existing crypto API can be refactored to use Zinc as its underlying
implementation.

= Tons of crypto code has already leaked into lib/, such as various hash
functions and chacha20. Developers want functions! Zinc provides them
in a non haphazard way.

/L

I[N

Implementations

* Current crypto APl is a museum of different primitives and
implementations.

= Who wrote these?
* Are they any good?

* Have they been verified?

i

Implementations

= Zinc’s approach is, in order of preference:
» Formally verified, when available.

 In widespread use and have received lots of scrutiny.

* Andy Polyakov’s implementations, which are also the fastest
available for nearly every platform.

» Stemming from the reference implementation.

i

Implementations

* ChaCha20: C, SSSE3, AVX2, AVX512F, AVX512VL, ARM32,
NEON32, ARM64, NEON64, MIPS32

* Poly1305: C, x86_64, AVX, AVX2, AVX512F, ARM32, NEON32,
ARM64, NEON64, MIPS32, MIPS64

= BLAKE2s: C, AVX, AVX512VL
= Curve25519: C, NEON32, x86_64-BMI2, x86_64-ADX
» Super high speed.

i

Formal Verification

» HACL* and fiat-crypto
* Machine-generated C that’s actually readable.

» Define a model in F* of the algorithm, prove that it’s correct,
and then lower down to C (or in some cases, verified
assembly).

* Much less likely to have crypto vulnerabilities.

» HACL* team is based out of INRIA and is working with us on
Zinc.

i

Stronger Relations with Academia

» People who design crypto primitives and the best and
orightest implementing them generally don’t come near the
kKernel:

= [t’s weird, esoteric, hard to approach.

» Goal is to make this an attractive project for the best minds,
to accept contributions from outside our kernel bubble.

= Several academics have already expressed interest in
dedicating resources, or have already begun to contribute.

i

Fuzzing

» All implementations have been heavily fuzzed and continue
to be heavily fuzzed.

int LLVMFuzzerTestOneInput(const unsigned char *input, unsigned long len)
{
unsigned char outl1[16], out2[16], out3[16];
unsigned char keyl1[32], key2[32], key3[32];
unsigned char inl[256], in2[256], 1in3[256];

if (len < 32 || len > 130)
return 0;

memcpy(keyl, input,
memcpy(key2, input,
memcpy(key3, input,
memcpy(inl, input +
memcpy(in2, input +
memcpy(in3, input +

1
W ww
N NN
S S

polyl1305_hacli28(outl, inl, len - 32, keyl);
polyl1305_hacl256(out2, in2, len - 32, key2);
polyl1305_donna32(out3, in3, len - 32, key3);

assert(!memcmp(outl, out3, 16) && !memcmp(out2, out3, 16));

return 0;

Assurance

* By choosing implementations that are well-known and
broadly used, we benefit from implementation analysis from
across the field.

= Andy Polyakov’s CRYPTOGAMS implementations are used in
OpenSSL, for example.

i

Straightforward Organization

* Implementations go into lib/zinc/{name}/

= lib/zinc/chacha20/chacha20.c
lib/zinc/chacha20/chacha20-arm.S
lib/zinc/chacha20/chacha20-x86_64.S

* By grouping these this by primitive, we invite contribution in an
approachable and manageable way.

= [t also allows us to manage glue code and implementation
selection via compiler inlining, which makes things super fast.

= No immense retpoline slowdowns due to function pointer soup.

i

Compiler Inlining

static inline-void- polyl305_emit(void- xctx, u8-mac[POLY1305_KEY_SIZE],
> > > rconst-u32-noncel4],
> > > -simd_context_t-*xsimd_context)

1+ (!polyl305_emit_arch(ctx, *mac, *nonce, *simd_context))
> polyl305_emit_generic(ctx, -mac, -nonce) ;

i

Branch Prediction is Faster than Function Pointers

static inline bool poly1305_emit_arch(void *ctx, u8 mac[POLY1305_MAC_SIZE],
const u32 nonce[4],
simd_context_t *simd_context)
{
#if defined(CONFIG_KERNEL_MODE_NEON)
if (polyl1305_use_neon && simd_use(simd_context)) {
poly1305_emit_neon(ctx, mac, nonce);
return true;
}
convert_to_base2_64(ctx);
#endif

poly1305_emit_arm(ctx, mac, nonce);
return true;

SIMD Context Optimizations

» Traditional crypto in the kernel follows usage like:

while (walk.nbytes >= CHACHA20_BLOCK_SIZE) {
chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr,
rounddown(walk.nbytes, CHACHA20_BLOCK_SIZE));
err = skcipher_walk_done(&walk,
walk.nbytes % CHACHA20_BLOCK_SIZE);
}

if (walk.nbytes) {

chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr,
walk.nbytes);
err = skcipher_walk_done(&walk, 0);

}
kernel_fpu_end();

SIMD Context Optimizations

= What happens when encrypt is called in a loop?

for (packet i1n packets) {
encrypt(packet);

h

= We have to save and restore the FPU registers every time.
= Super slow!

i

SIMD Context Optimizations

= Solution: simd batching:
simd_context_t sima_context;

simd_get(&simd_context);
for (packet in packets) {

encrypt(packet, &simd_context);
simd_relax(&simd_context);

}

simd_put(&simd_context);

» Familiar get/put paradigm.

= Since simd disables preemption, simd_relax ensures that
sometimes we do toggle simd on and off.

i

SIMD Context Optimizations
* Then, the crypto implementations check simd_use, to activate
simd (only the first time):
vold encrypt(struct packet *packet, simd_context_t *simd_context)

{
1f (packet->len >= LARGE_FOR_SIMD && simd_use(simd_context))

wild_simd_code(packet);
else
boring_scalar_code(packet);

» Avoids activating simd if it’s not going to be used in the end.

i

Zinc: Lightweight and Minimal Jason Donenfeld

= Personal website:

» Change in direction from present crypto API. WWW.zx2¢4.com

. = WireGuard:
Faster. Www.wireguard.com

» Lightweight. = Company:

www.edgesecurity.com

Easier to use.

= Email:
Jason@zx2c4.com

Fewer security vulnerabilities.

Maintained by Jason Donenfeld (WireGuard)
and Samuel Neves (BLAKE2, NORX, MEM-AEAD).

Currently posted alongside WireGuard in v6
form.

» We’re shooting for Linux 5.0.

i

http://www.zx2c4.com/
http://www.wireguard.com/
http://www.edgesecurity.com/
mailto:Jason@zx2c4.com

