) WREGUARD

FAST, MODERN, SECURE VPN TUNNEL

Presented by Jason A. Donenfeld

NETDEV

J-“w J..o.o“!”.o.]] L ONISI2NES
»m, on Linwe Mstioreingy

Who Am1?

= Jason Donenfeld, also known as zx2c4.

= Background in exploitation, kernel vulnerabilities, crypto

vulnerabilities, and been doing kernel-related development for a
long time.

= Motivated to make a VPN that avoids the problems in both

crypto and implementation that I've found in numerous other
projects.

€¢) WREGUARD

What is WireGuard?

- I_Pay6er 3 secure network tunnel for IPv4 and
V6.

= Opinionated. Only layer 3!

= Designed for the Linux kernel

= Slower cross platform implementations also.
= UDP-based. Punches through firewalls.

= Modern conservative cryptographic
principles.

= Emphasis on simplicity and auditability.

= Authentication model similar to SSH’s
authenticated_keys.

= Replacement for OpenVPN and IPsec.

= Grew out of a stealth rootkit project.

= Techniques desired for stealth are equally as
useful for tunnel defensive measures.

€¢) WREGUARD

Blasphemy!

= WireGuard is blasphemous!

= We break several layering assumptions of 90s networking
technologies like IPsec.

= |[Psec involves a “transform table” for outgoing packets, which is
managed by a user space daemon, which does key exchange and
updates the transform table.

= With WireGuard, we start from a very basic building block - the
network interface - and build up from there.

= Lacks the academically pristine layering, but through clever
organization we arrive at something more coherent.

€¢) WREGUARD

Easily Auditable

OpenVPN Linux XFRM StrongSwan SoftEther WireGuard
116,730 LoC 13,898 LoC 405,894 LoC 329,853 LoC 3,782 LoC

Plus OpenSSL! Plus StrongSwan! Plus XFRM!

Less IS more.

€¢) WREGUARD

Easily Auditable

IPsec

(XFRM+StrongSwan)
419,792 LoC

SoftEther

329,853 LoC

WireGuard
3,782 LoC

OpenVPN /
116,730
LoC

REGUA

~RD

Simplicity of Interface

= WireGuard presents a normal network interface:

ip link add wgb type wireguard

ip address add 192.168.3.2/24 dev wgo
ip route add default via wg0

ifconfig wg0o ..

iptables -A INPUT -1 wg0 ..

H H H H H

/etc/hosts.{allow,deny}, bind(), ..

= Everything that ordinarily builds on top of network interfaces -
like eth® orwlanO - can build on top of wg0.

€¢) WREGUARD

Simplicity of Interface

= Theinterface appears stateless to the system administrator.

= Add an interface -wg0,wgl,wg2, ... - configure its peers, and
immediately packets can be sent.

= Endpoints roam, like in mosh.
= |dentities are just the static public keys, just like SSH.

= Everything else, like session state, connections, and so forth, is
invisible to admin.

€¢) WREGUARD

Cryptokey Routing

= The fundamental concept of any VPN is an association between
public keys of peers and the IP addresses that those peers are
allowed to use.

= A WireGuard interface has:
= Aprivate key
= Alistening UDP port
= Alist of peers

= A peerhas:
= Apublic key
= Alist of associated tunnel IPs
= Optionally has an endpoint IP and port

€¢) WREGUARD

Cryptokey Routing

PUBLIC KEY :: IP ADDRESS

€¢) WREGUARD

Cryptokey Routing

Server Config

[Interface]

PrivateKey =
yAnz5TF+1XXJteld4tji3zIMNg+hd2rYU
TgIBgB3fBmk=

ListenPort = 41414

[Peer]

PublicKey =
xTIBA5rboUvnH4htodjb6e697QjLERt1
NAB4mZqp8Dg=

AllowedIPs =
10.192.122.3/32,10.192.124.1/24

[Peer]

PublicKey =
TrMvSoP4jYQLlY6RIzBghssQqY3vxI2Pi
+y711TOWWXX0=

AllowedIPs =
10.192.122.4/32,192.168.0.0/16

Client Config

[Interface]

PrivateKey =
gI6EdUSYvn8ugX0t8QQD6Yc+JyiZxIhp
3GINSWRfWGE=

ListenPort = 21841

[Peer]

PublicKey =
HIgo9xNzIMWLKASShiTqIybxZ0U3wGL1
UeJ1PKf8ykw=

Endpoint = 192.95.5.69:41414
AllowedIPs = 0.0.0.0/0

€¢) WREGUARD

Cryptokey Routing

= Makes system administration
very simple.

= |fit comes from interface wg0
and is from Yoshi’s tunnel IP
addressof 192.168.5.17,
then the packet definitely came
from Yoshi.

= The iptables rules are plain
and clear.

€¢) WREGUARD

Simple API

= Sincewg (8) is averysimple tool, that works with ip (8), other
more complicated tools can be built on top.

= Merge into iproute2 or keep standalone?

= Netlink-based API.
= Just two commands: WG_CMD_GET_DEVICE,WG_CMD_SET_DEVICE

= Set takes device parameters and nested peers with nested allowed IPs

= Allows userspace to easily fragment massive sets over several separate messages

= Model is deny-by-default so no races

= Get returns device parameters and nested peers with nested allowed IPs
= NLM_F_DUMP

= Roadmap: multicast event notifications for dynamic things.

€¢) WREGUARD

Easily Composed and Integrated

Debian’s ifupdown

OpenWRT/LEDE - core repository
OpenRC netifrc

NixOS

Buildroot

LinuxKit (from the Docker people)
EdgeOS / Vyatta / Ubiquiti devices
Android - runs on the phone in my pocket
systemd-networkd (WIP)
NetworkManager (WIP)

A million trivial shell scripts using wg(8)

Packages for 20 different distributions

REGUARD

Simple Composable Tools: wg—quick

= Simple shell script

= # wg—quick up vpnO
wg-quick down vpnoO

= [etc/wireguard/vpn0.conf:

[Interface]

Address = 10.200.100.2

DNS = 10.200.100.1

PrivateKey = uDmWOQECQZWPv4K83yg26b3L4r93HvLRcal997IGLEE=

[Peer]

PublicKey = +LRS630XvyCoVDs1lzmWRO/6gVkfQ/pTKEZvZ+CehOlE=
AllowedIPs = 0.0.0.0/0

Endpoint = demo.wireguard.io:51820

€¢) WREGUARD

Timers: A Stateless Interface for a
Stateful Protocol

= As mentioned prior, WireGuard appears “stateless” to user
space; you set up your peers, and then it just works.

= Aseries of timers manages session state internally, invisible to
the user.

= Every transition of the state machine has been accounted for, so
there are no undefined states or transitions.

= Event based.

€¢) WREGUARD

Timers

« If no session has been established for 120 seconds, send
User space sends packet. handshake initiation.

No handshake response after 5 « Resend handshake initiation.
seconds.

Successful authentication of « Send an encrypted empty packet after 10 seconds, if we
don’t have anything else to send during that time.

incoming packet.

NS TV e Bl - Send handshake initiation.
incoming packets after 15 seconds.

€¢) WREGUARD

Network Namespace Tricks

= The WireGuard interface can live in one namespace, and the
physical interface can live in another.

= Only let a Docker container connect via WireGuard.

= Only let your DHCP client touch physical interfaces, and only let
your web browser see WireGuard interfaces.

= Nice alternative to routing table hacks.

= Means we keep a reference to the source namespace when the
struct net_device iscreated.

€¢) WREGUARD

Namespaces: Containers

p addr
lo: <LOOPBACK,UP,LOWER_UP>
inet 127.0.0.1/8 scope host lo
17: wgO: <NOARP,UP,LOWER_UP>
inet 192.168.4.33/32 scope global wg0

1
e

€¢) WREGUARD

Namespaces: Personal VPN

p addr
lo: <LOOPBACK,UP,LOWER_UP>
inet 127.0.0.1/8 scope host lo
17: wgO: <NOARP,UP,LOWER_UP>
inet 192.168.4.33/32 scope global wg0

1
e

€¢) WREGUARD

Policy Routing
= Can set the fwmark on outgoing UDP packets (SO_MARK)
= Works decently, but not_oif /SO_NOTOIF would be much simpler:
struct flowi fl = {
.not_oif = dev->ifindex
s
or
setsockopt(sock, SO_NOTOIF, ifr.ifr_ifindex);
= Reduces need for complex ip-rules and suppress_prefix.

= Avoids routing loops.

€¢) WREGUARD

Stealth

= Should not respond to any
unauthenticated packets.

= Hinder scanners and service
discovery.

= Service only responds to
packets with correct crypto.

= Not chatty at all.

= When there’s no data to be
exchanged, both peers become
silent.

= Nice for efficiency on mobile
too.

€¢) WREGUARD

Static Allocations, Guarded State, and
Fixed Length Headers

= All state required for WireGuard to work is allocated during
config.

= No memory is dynamically allocated in response to received
packets.

= Eliminates entire classes of vulnerabilities.

= All packet headers have fixed width fields, so no parsing is
necessary.

= Eliminates another entire class of vulnerabilities.

= No state is modified in response to unauthenticated packets.

= Eliminates yet another entire class of vulnerabilities.

€¢) WREGUARD

Crypto Designed for Kernel

= Design goals of guarded memory safety, few allocations, etc have direct
effect on cryptography used.

= |deally be 1-RTT.
= Fast crypto primitives.

= Clear division between slowpath (workqueues) for ECDH and fastpath
for symmetric crypto.

= Handshake in kernelspace, instead of punted to userspace daemon like
IKE/IPsec.

= Allows for more efficient and less complex protocols.

= Exploit interactions between handshake state and packet encryption state.

€¢) WREGUARD

Formal Symbolic Verification

The cryptographic protocol has been formally verified using Tamarin.

Proof scripts
Lemma S€s510N UN1QUENess:
all-traces
"(¥ pki pkr peki pekr psk ck #i.
(IKeys(<pki, pkr, peki, pekr, psk, ck>) @ #i) -
(~(3 peki2 pekr2 #k.
(IKeys(<pki, pkr, peki2, pekr2, psk, ck>) @ #k) A
(=(#k = #1))))) &
(¥ pki pkr peki pekr psk ck #i.
(RConfirm(<pki, pkr, peki, pekr, psk, ck=) @ #i) =
(=(3 peki2 pekr2 psk2 #k.
(RConfirm{ <pki, pkr, peki2, pekr2, psk2, ck>) @ #k) A
(~(#k = #i)))))"
by sorry

lemma secrecy without psk_compromise:
all-traces
"(¥ pki pkr peki pekr psk ck #i #j.
((IKeys(<pki, pkr, peki, pekr, psk, ck>) @ #1) &
(K(ck) @ #j)) -~
((3 #j2. Reveal PSK(psk) @ #j2) v (psk = "nopsk')}) a
(¥ pki pkr peki pekr psk ck #i #j.
((RConfirm(<pki, pkr, peki, pekr, psk, ck>) @ #i) A
(K(ck) @ #j)) »
((3 #j2. Reveal PSK(psk) @ #j2) v (psk = 'nopsk'}))"
by sorry

lemma key secrecy [reuse]:
all-traces
"¥ pki pkr peki pekr psk ck #i #i2.
((IKeys(<pki, pkr, peki, pekr, psk, ck>) @ #1i) &
(RKeys(<pki, pkr, peki, pekr, psk, ck>) @ #i2)) =
(((~(3 #]. K{ ck) @#j)) v
(3 #j #j2.
(Reveal AK(pki) @ #j) a (Reveal EphK(peki) @ #j2))) v
(3 #j #j2.
(Reveal AK(pkr) @ #j) n (Reveal EphK(pekr) @ #j2)))"
by sorry

lemma identity hiding:
all-traces
"V pki pkr peki pekr ck surrogate #i #j.
(((RKeys(<pki, pkr, peki, pekr, ck>) @ #i) A
(Identity Surrogate(surrogate) @ #i)) &
(K(surrogate) @ #j)) -
(((3 #j.1. Reveal AK(pkr) @ #j.1) v
(3 #j.1. Reveal AK(pki) @ #j.1)) v
(3 #j.1. Reveal EphK(peki) @ #j.1))"
by sorry

amd

Lemma: key_secrecy

Applicable Proof Methods: Goals sorted according to heuristics
adapted to stateful injective protocols

=

simplify
2. induction

. autoprove (A. for all solutions)
. autoprove (B. for all solutions) with proof-depth bound 5

oTw

Constraint system
last: none

formulas:
3 pki pkr peki pekr psk ck #i #i2.
(IKeys(<pki, pkr, peki, pekr, psk, ck>) @ #i) A
(RKeys(<pki, pkr, peki, pekr, psk, ck>) @ #i2)

A
(3 #j. (K(ck)@ #)) a
(v #] #j2.
(Reveal _AK(pki) @ #j) a (Reveal_EphK(peki) @ #]2) = L) A
(V #] #j2.
(Reveal_AK(pkr) @ #j) a (Reveal_EphK(pekr) @ #j2) = 1)

equations:
subst:
conj:

lemmas:
¥ id id2 ka kb #i #].
(Paired(id, ka, kb) @ #i) a (Paired(id2, ka, kb) @ #j)

#i = #j
V pki pkr peki pekr psk ck #i.
(IKeys(<pki, pkr, peki, pekr, psk, ck>) @ #i}
=
(3 #j.
(RKeys(<pki, pkr, peki, pekr, psk, ck=) @ #j)
A

#) < #i) v
(psk = 'nopsk') v
(3 #j. (Reveal PSK(psk) @ #) #] < #i)) [Q Loading, please wait... Cance

IREGUARD

Multicore Cryptography

= Encryption and decryption of packets can be spread out to all
cores in parallel.

= Nonce/sequence number checking, netif_rx, and
transmission must be done in serial order.

= Requirement: fast for single flow traffic in addition to multiflow
traffic.

€¢) WREGUARD

Multicore Cryptography

= Parallel encryption queue is multi-producer, multi-consumer
= Lockless algorithms?

= Lockless linked list is difficult, but lockless ring buffer is more common

= Single queue, shared by all CPUs, rather than queue per CPU

= No reliance on process scheduler, which tends to add latency when waiting for packets
to complete

= Serial transmission queue waits on ordered completion of parallel queue items

» Usingnetif_receive_skbinstead of netif_rx topushbackon encryption queue

= Bunching bundles of packets together to be encrypted on one CPU results in high
performance gains

= How to choose the size of the bundle?

€¢) WREGUARD

Generic Segmentation Offload

= By advertising that the net_device suppports GSO,
WireGuard receives massive “super-packets” all at the same
time.

= WireGuard can then split the super-packets by itself, and bundle
these to be encrypted on a single CPU all at once.

= Each bundleis a linked list of skbs, which is added to the ring
buffer queue.

€¢) WREGUARD

Multicore Cryptography

REGUA

~RD

Multicore Cryptography

= How to determine queue lengths?

= One approach isto just have a fixed queue length, that isn’t overly
big.

= Queues could alternatively use struct dqgl,orfullon fg_codel.
= If fg_codel, use via qdisc, or directly like certain wifi drivers?
= Fairness between peers is consideration.

= Advantage of IFF_NO_QUEUE is that we can return errno to
userspace directly.
= —-ENOKEY, —-EDESTADDRREQ, —-EPROTONOSUPPORT

= There’s ICMP for this too, though.
= NAT isstill an issue.

€¢) WREGUARD

= Some folks wish to send in-band configuration messages.
= Dynamic IP addresses, other horrible things.
= New fangled post-quantum key exchanges.

= Other monstrous things too!

= What situations necessitate in-band control messages?

= How much can be done out-of-band or statically, during the actual
key exchange step?

€¢) WREGUARD

= Three approaches toward in-band messaging:
1. AF_WIREGUARD

= Elegant, sleek, obvious
= Hard tojustify adding a new AF

= Host of interesting unforeseeable possibilities and uses

2. Netlink Events
= More typical way of doing it these days
= Unintrusive

= Reinforces it being for control messages, not for real data

3. Notsupporting it
= Keep doing things out of band!

= Simpler, cleaner

€¢) WREGUARD

Sticky Sockets

= WireGuard listens on all addresses, but manages to always reply
using the right source address.

= Caching of destination address and interface of incoming
packets, but ensures that this stickiness isn’t too sticky.

= Does theright thing every time - interface disconnects, routes
change, etc.

= Actually maps mostly nicely to possible semantics of
IP_PKTINFO, so userspace implementations can do this too,
sort of.

€¢) WREGUARD

Secret Handling

= Extensive use of memzero_explicit.

= Much crypto-related code in the kernel forgets or does not care.
= KTLS!

= Netlink is very problematic, since it uses skbs.
= New skb flag? SKB_ZERO_ON_FREE?

€¢) WREGUARD

Crypto APl Improvements

= WireGuard uses its own internal crypto APl and primitives.

= Road ahead for working these enhancements into kernel’s
crypto API.

= Direct function calls, without abstraction layer.
= Advanced protocols need to change key frequently.
= Avoid allocations.

= WIP: formally verified implementations from INRIA.

€¢) WREGUARD

Crypto API: Batching of FPU Context

= Saving and restoring FPU registers multiple times is inefficient.

= Save these once per thread, by hoisting calls out
kernel_fpu_begin outside encryption loops.

= Straightforward approach, but lazy restoration might be cleaner
and require less state passing.

€¢) WREGUARD

Performance

= Beingin kernel space means that it is fast and low latency.

= No need to copy packets twice between user space and kernel space.

. ChfaCha20Poly1305 is extremely fast on nearly all hardware, and
safe.

= AES-NI is fast too, obviously, but as Intel and ARM vector instructions
become wider and wider, ChaCha is handedly able to compete with AES-
NI, and even perform better in some cases.

= AES is exceedingly difficult to implement performantly and safely (no
cache-timing attacks) without specialized hardware.

= ChaCha20 can be implemented efficiently on nearly all general purpose
processors.

= Simple design of WireGuard means less overhead, and thus better
performance.

= Less code = Faster program? Not always, but in this case, certainly.

€¢) WREGUARD

Performance

OpenVPN (AES)

IPSec (ChaPoly)

IPSec (AES)

WireGuard

Bandwidth

' 257

l 825
I 881
S o

0 128 256 384 512 640 768 896 1024
Megabits per Second

OpenVPN (AES)

IPSec (ChaPoly)

IPSec (AES)

WireGuard

0

Ping Time

-1

0.508

l 0.501
¥

0.25 0.5 0.75 1
Milliseconds

1.25

15

1.541

W

REGUA

~RD

Continuous Integration

= Extensive test suite, trying all sorts of topologies and many
strange behaviors and edge cases.

= Every commit is tested on every kernel.org kernel (and a few
more), and built and run fresh in QEMU

= Tests on x86_64, ARM, AArch64, MIPS

€¢) WREGUARD

build.wireguard.com

LITIUA “t. L=71 LO | XO00_04) TJULLTCDOD
Linux 4.14-rc8 (aarché4) Success
Linux 4.14-rc8 (arm) Success

WireGuard Test Suite on Linux 4.14.6-rc8 armv7l

Mounting filesystenms...
Module self-tests:

Enabling logging...
Launching tests...

ip netns add wg-test-44-0
ip netns add wg-test-44-1
ip netns add wg-test-44-2

Linux 4.14-rc8 (mips) Success
Linux4.13.11 (x86_64) Success
Linux 4.9.60 (x86_64) Success
Linux 4.4.96 (x86_64) Success
Linux 4.1.45 (x86_64) Success

oA —e

WIREGUARD

Upstream Roadmap

= Multicast Netlink events.

= Maybe in-band messages.

= Biggest blocker is crypto API.

= Eyeing beginning of next year for initial [PATCH] post.

= Already integrated into many distributions and sees regular testing
on network intense projects like LEDE/OpenWRT and LinuxKit.

= Commercial VPN providers already using it.
= Regular snapshot releases are being made.

= Now is time to start soliciting upstream feedback.

€¢) WREGUARD

Jason Donenfeld
Available now for all major distros:

wireguard.com/install = Personal website:
WWW.zx2c4.com

Build it directly into the kernel or compileitas a

module. . Email:
Peer-reviewed paper published in NDSS 2017, Jason@zx2c4.com
available at: wireguard.com/papers/wireguard.pdf
= - = Company:
$ git clone www.edgesecurity.com

https://git.zx2c4.com/WireGuard

I) EDGESECURITY

wireguard@lists.zx2c4.com
lists.zx2c4.com/mailman/listinfo/wireguard

#wireguard on Freenode

STICKERS FOR EVERYBODY:

lists.zx2c4.com/pipermail/wireguard/2017-May/001338.html

Plenty of work to be done: looking for interested
devs.

€¢) WIREGUARD www.wireguard.com

https://www.wireguard.com/install/
https://www.wireguard.com/papers/wireguard.pdf
https://git.zx2c4.com/WireGuard
mailto:wireguard@lists.zx2c4.com
https://lists.zx2c4.com/mailman/listinfo/wireguard
https://lists.zx2c4.com/pipermail/wireguard/2017-May/001338.html
http://www.zx2c4.com/
mailto:Jason@zx2c4.com
http://www.edgesecurity.com/

